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1 Simulation Methods

1.1 Data Generating Processes

For each power simulation I start from a data generating process (DGP) that allows for correla-
tion between transactions made by shoppers and agents. In these DGPs, i indexes auditor and j
indexes target. For ease of exposition, I will refer to these as shoppers and agents, as is the case
in the common example of mobile money overcharging.

1.1.1 Test Size Simulations

Let yij be a continuous outcome measure (e.g., charges per $ of cash out), for the size simulations,
we model the DGP as

yij = µ+ γi + δj + εij (1)

where γi captures shopper-speci�c shocks, and δj captures agent-speci�c shocks. In this case,
µ = E(yij). �e shopper speci�c shock γi ∼ N(0, σ2

S) where σ2
S = ρSσ

2
ε

1−ρS−ρA
and the agent

speci�c shock δj ∼ N(0, σ2
A) where σ2

A = ρAσ
2
ε

1−ρS−ρA
. For each case, I choose this expression

to account for the multiple shocks built into the data structure, which causes the ICC for any
given group to be reduced when using formulas, e.g., for one way intraclass dependence. By
in�ating the variance of any given shock by these factors, I able to match the empirical ICCs to
ICC generated by simulation data. Finally, εij ∼ N(0, σ2

ε) where σ2
ε = (1− ρS − ρA)V ar(yij).

1.1.2 Power: Shopper E�ects

Shoppers i and j can belong to various groups Gl. Starting with a single shopper characteristic,
shoppers i can belong to one of two groups: G0, the comparison group, and G1 the treatment
group. We model the DGP as the following:

yij = µ+ βTi + γi + δj + εij (2)

where Ti = 1(i ∈ G1), µ = E(yij|Ti = 0), and β is the e�ect of being in the treated group
relative to the comparison group.1

1We could similarly build a DGP if we have several groups of interest, l = 0, . . . , L:

yij = µ+

L∑
l=1

βlTli + γi + δj + εij

where Tli = 1(i ∈ Gl) and βl is the e�ect of being in a treatment group relative to the comparison group, though
we don’t use this in any simulations.
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1.1.3 Power: Shopper and Agent E�ects

I refer to “factorial” designs as a design where the treatment is the match between shopper and
agent characteristics. One notable example is interactions between men and women as shoppers
and agents. While these could take a few forms, a �exible form with one treatment group would
be expressed

yij = µ+ β1Ti + β2Tj + β3TiTj + γi + δj + εij (3)

where Ti = 1(i ∈ G1), Tj = 1(j ∈ G1) and β1 is the e�ect of the shopper being in a treatment
group, β2 is the e�ect of the agent being in the treatment group, and β3 the additional e�ect of
both being in the treatment group (all relative to the comparison group). Here µ = E(yij|Ti =
0 and Tj = 0).

1.2 Speci�cations

We can use audit studies to measure di�erential treatment by auditor characteristic, target char-
acteristic, market characteristic, or some combination of the three. Mirroring the DGPs for power
analysis, I focus on auditor characteristics, and then the combination of auditor and target char-
acteristics. To �x ideas, I continue to use the example of discrimination that takes the form of
di�erential charges by gender by mobile money agents.

1.2.1 Shopper E�ects

In our example, we recruit shoppers that are 50% female and have them visit agents in their local
market. Among the selected set of shoppers and agents, all shoppers visit all agents and a�empt
a transaction. �ey record how much they are charged for that transaction, which can be used
to measure overcharging. A�er collecting this data, we run the following regression:

yijm = α + β Tim + εijm (4)

where i indexes shopper, j indexes agent, m indexes market, yij is a measure of overcharging,
and Tim tracks if the shopper is female. α measures how much mean are (over)charged while
α + β measures how much women are (over)charged. �en to test di�erential overcharging, we
are interested in the hypothesis test H0 : β = 0, which may be one or two sided.

1.2.2 Shopper and Agent E�ects

We might also have a set up where the treatment of interest is the interaction of the shopper and
the agent gender. In this case, yijm was the incidence of overcharging of auditor i by agent j.

4



However, treatment was de�ned based on the characteristics of both i and j. In particular, the
paper tests for shopper-agent gender interaction e�ects, which we represent more simply as,

yijm = α + βTim + γTjm + δTimTjm + εijm. (5)

Here, αmeasures overcharging of men by men, α+β measures overcharging of women by men,
α + γ measures overcharging of men by women, and �nally, α + β + δ measures overcharging
of women by women. Here we are interested in three hypothesis tests: H0 : β = 0, H0 : γ = 0,
and H0 : δ = 0.

1.3 Details of Simulations

1.3.1 Test Size Simulations

For these test size simulations, I vary ρS , ρA, nS , and nA. I assume three scenarios for shopper
and agent ICCS: (ρS, ρA) ∈ {(0.05, 0.05), (0.20, 0.05), (0.05, 0.20)}, Likewise, I assume three
scenarios for number of shoppers and agents: (nS, nA) ∈ {(4, 16), (8, 8), (16, 4)}. In total, nine
di�erent parameter sets are used, combining all possible tuples of (ρS, ρA) and (nS, nA) for these
values. All other parameters in the simulation are held �xed. In particular, I assume σ2

ε = 1,
ρM = 0, and nM = 30.2 Shoppers and agents are both assumed to be 50% female and 50% male
in each market. It is assumed each shopper makes one transaction with each agent within a
market, for a total of 64 transactions in each market for all scenarios. �us for all simulations,
64× 30 = 1920 transactions take place.

For each simulation, I plot the standard errors for IID, One-Way: Agent, One-Way: Shopper,
Two-Way, and One-Way Market clustered standard errors. Additionally, I evaluate the rate at
which we reject the null hypotheses for both the shopper only speci�cation and the factorial
speci�cation and present these results.

2 Test Size Simulation Results

2.1 Standard Errors

2.1.1 Shopper ICC Equals Agent ICC

Figures 1, 2, and 3 show standard errors when shopper ICC equals agent ICC, ρS = ρA = 0.05. For
the shopper speci�cation (top le�), one-way agent and IID errors are relatively small compared

2Only three of ρS , ρA, σ2
ε and V ar(yij) need be speci�ed, so V ar(yij) is not speci�ed, though depending on ρS

and ρA, it should be 1
1−ρS−ρA
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to two-way and one-way shopper errors. With few markets, standard errors clustered one-way
on market don’t converge as quickly as the others here, which persists across simulations and
speci�cations.

When considering the factorial speci�cation, these results are consistent for the shopper e�ect
(top right). However, as would be expected, when considering the agent e�ect (bo�om le�), the
one-way agent standard errors tends to be larger, while the one-way shopper standard errors
tend to be smaller. As before, the two-way clustered standard errors tend to be closer to the more
conservative of the two.

When considering the interaction e�ect, we �nd strange results. In particular, IID errors are
largest on average, though it is unclear why this is the case. Next largest are the errors clustered
one-way on shopper or agent (with ICCs equal, the the larger groups tends to have larger, errors.
Finally, two-way clustering provides the smallest of the more consistent errors (i.e., leaving aside
one-way market standard errors).

Some observations can also be made from changing the number of shoppers and agents. First,
as group size goes up, the variance of the error falls, when clustering one-way on that group and
vice-versa (as one would expect). Second, the variance of two-way clustered standard errors
mirrors the variance of the smaller group.3 Finally, when considering the IID errors these tend to
follow the larger group on average (though they do not change in variance).

2.1.2 Shopper ICC Does Not Equal Agent ICC

Figures 4, 5, and 6 present standard errors when shopper ICC exceeds agent ICC, varying the
number of shoppers and agents. Likewise, Figures 7, 8, and 9 present standard errors when agent
ICC exceeds shopper ICC, varying the number of shoppers and agents.

Considering the shopper speci�cation when shopper ICC is larger than agent ICC, comparing
Figures 2 and 5, we notice an increase in one-way shopper and two-way standard errors. �is
makes sense since as the ICC for shopper rises from 0.05 to 0.2, we should see a decrease in
e�ective sample size. �at is, each observation is less informative. Otherwise, conclusions remain
the same as we adjust the number of shoppers and agents. However, the ordering of standard
errors tends to be the same. Considering instead when agent ICC is larger (top le� of Figure 8)
the standard errors are very similar to those in Figure 2. In fact, the one-way standard errors for
both shopper and agent are quantitatively similar, as are the IID errors. However, the two-way
standard errors increase in size and are smaller (closer to the agent standard errors).

Note that for the factorial speci�cation and unequal ICCs, the results when ρS > ρA mirror
3�inking about this in terms of Cameron et al. (2011)’s expression of the Standard Errors, this makes sense:

V (β̂) = V S(β̂) + V A(β̂) − V S∩A(β̂) = V S(β̂) + V A(β̂) since there is only one transaction per shopper-agent
dyad. If V S(β̂) doubles while V A(β̂) halves, V (β̂) will rise when V A(β̂) ≈ V S(β̂) to start.
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those of when ρS < ρA, simply replacing comments about shoppers with agents, and vice-versa.
�us we will consider the case where shopper ICC is large.

Considering the factorial speci�cation, is mirrored for the shopper gender e�ect (top right).
Considering the agent gender e�ect, whenwe have the same number of shoppers and agents (Fig-
ures 2 and 5) we tend to see similar one-way agent standard errors, but smaller one-way shopper
standard errors. Two-way standard errors tend to fall as well. Considering the interaction e�ect
in the factorial speci�cation, the di�erence in ICCs drives the one-way agent and one-way shop-
per standard errors apart. While both are still larger than the two-way standard errors on this
e�ect, the cluster with higher ICC has smaller standard errors, all else held equal. In addition, the
standard errors for the smaller ICC also have lower variance.

2.2 False Positives

2.2.1 Shopper ICC Equals Agent ICC

In Tables 1, 2, and 3, I present the rate of false positives when shopper ICC equals agent ICC.
Considering the shopper only speci�cation, we see that only the one-way shopper errors are

conservative while others are liberal in varying degrees. Of these, agent standard errors do the
worst, followed by IID standard errors, market standard errors, and �nally two-way standard
errors, which are close to balanced, though still consistently liberal. When shoppers are the
smaller group, all choices of standard errors tend to be more liberal, and vice versa.

Considering the factorial model, no set of standard errors is conservative for all the estimated
e�ects, which leaves us with tricky decisions. First, when group sizes are equal, clustering on
shopper or agent, yields conservative standard errors for terms that are correlated at this level. For
example, one-way clustering on shopper is conservative for shopper gender and the interaction
of genders. IID is conservative only on the interaction of shopper gender, though this is di�cult
to account for.4

When considering two-way clustering and one-way clustering on market, we see that errors
tend to be liberal, though consistently liberal across e�ects. In general, two-way tend to be lower,
though it is surprising that they are not closer to balanced in this case. In the case of one-way
on markets, it is clear that this is the result of too few clusters Cameron and Miller (2015). �is
issue is the result of a bias-variance trade-o�. �ough market level standard errors should be
conservative, they do not converge as quickly as other standard errors and thus produce too
many simulations where the market standard error is very small, driving the over-rejection. �e

4One idea is that because there is only one unique interaction for each dyad in this simulation, this is equivalent
to clustering on dyad, which would be the appropriate level of clustering for the correlation observed in this variable.
For multiple transactions, we would want to cluster on the dyad (note this is not the same thing as dyadic robust
standard errors).
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common approach is to utilize wild cluster bootstrap to address this MacKinnon andWebb (2018);
Roodman et al. (2019).5

Overall, there are limited di�erences in standard errors by group size. Somewhat unexpect-
edly, we also see that when we have unequal sized groups, IID errors are conservative for the
larger group. Similarly, the performance of one-way standard errors is be�er overall when they
cluster on the smaller group, though they sill overreject (e.g., more than two-way for coe�cients
on terms related to the group that is not clustered on). �e intuition here is not obvious. One
would expect the larger group to have less information for each observation, meaning the IID
errors would di�er more from the robust standard errors.6

2.2.2 Shopper ICC Does Not Equal Agent ICC

Figures 8-9 present results when shopper and agent ICCs di�er. In general, results change largely
in degree as opposed to character (liberal or conservative), though occasionally an e�ect-standard
error will switch. �ose standard errors that were conservative for some e�ect before tend to
continue to be conservative for that same e�ect. However, there are notable changes.

Considering the shopper only speci�cation, when agent ICC increases, the one-way shopper
clustering tends to be more conservative. On the contrary, agent standard errors become even
worse, particularly when we have few shoppers. On the other hand, when shopper ICC increases,
shopper standard errors becomemore liberal, in these simulations close to 5%, sometimes peeking
over. Finally, in this scenario, IID and one-way agent standard errors become considerably worse,
reaching their zenith (in a bad way) in the simulation with few shoppers. Here these errors over
reject at a rate almost seven times the true size of the test.

Considering the factorial speci�cations, we have really three scenarios. First, equal sized
groups with unequal ICCs; second, larger groups with larger ICCs; and third, smaller groups
with larger ICCs. Starting with the �rst case, equal sized groups. IID standard errors are more
conservative for the interaction term and tend to be conservative for groups with more members
and smaller ICCs. One-way clustering on agent becomes more conservative for the agent gender
term when there is lower ICC within agent (likewise for shopper). Two-way clustering remains
very stable, but still is liberal. Second, when larger groups have larger ICCs (see Tables 5 and 9),
IID errors tend to be liberal. One-way errors tend to be consistent with the equal groups sizes
case. �ird, when smaller groups have larger ICCS (see Tables 6 and 8), one-way errors on the

5Because of the similarity of the two-way standard errors and one-way market standard errors, a similar con-
sideration might be made for these errors. However, considering the size of the standard errors, it’s important to
note that these tend to blend the one-way agent and shopper standard errors. �is o�en means they’re a blend of a
larger and smaller error (for that coe�cient) meaning their mean lies in between as does their variance. �is would
discredit the bias-variance trade-o�.

6�ese also rely on low values of the ICC for the term that is conservatively rejected.
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smaller group are even more conservative for their like term. Finally, the large group with small
ICC rejects conservatively with IID errors. However, the small group with large ICC becomes
very liberal, rejecting at more than four times the true size.
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A Figures

Figure 1: Simulated SEs when nS = 4, nA = 16, nM = 30, ρS = 0.05, ρA = 0.05, and ρM = 0
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Figure 2: Simulated SEs when nS = 8, nA = 8, nM = 30, ρS = 0.05, ρA = 0.05, and ρM = 0

Figure 3: Simulated SEs when nS = 16, nA = 4, nM = 30, ρS = 0.05, ρA = 0.05, and ρM = 0
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Figure 4: Simulated SEs when nS = 4, nA = 16, nM = 30, ρS = 0.20, ρA = 0.05, and ρM = 0

Figure 5: Simulated SEs when nS = 8, nA = 8, nM = 30, ρS = 0.20, ρA = 0.05, and ρM = 0
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Figure 6: Simulated SEs when nS = 16, nA = 4, nM = 30, ρS = 0.20, ρA = 0.05, ρM = 0

Figure 7: Simulated SEs when nS = 4, nA = 16, nM = 30, ρS = 0.05, ρA = 0.20, and ρM = 0
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Figure 8: Simulated SEs when nS = 8, nA = 8, nM = 30, ρS = 0.05, ρA = 0.20, and ρM = 0

Figure 9: Simulated SEs when nS = 16, nA = 4, nM = 30, ρS = 0.05, ρA = 0.20, and ρM = 0
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B Tables

Table 1: False Positives in Audit Studies by Choice of Standard Errors: nS = 8, nA = 8, nM = 30,
ρS = 0.05, ρA = 0.05, and ρM = 0.

Rejection Rate under Null
Gender of Factorial Model: Gender of

Standard Errors Shopper Shopper Agent Interaction
IID 8.74 6.04 6.00 3.78
One-Way: Agent 9.81 7.02 4.48 4.47
One-Way: Shopper 4.84 4.57 7.07 4.49
Two-Way 5.40 5.20 5.29 5.33
One-Way: Market 6.13 5.70 5.94 5.80

Table 2: False Positives in Audit Studies by Choice of Standard Errors: nS = 4, nA = 16, nM =
30, ρS = 0.05, ρA = 0.05, and ρM = 0.

Rejection Rate under Null
Gender of Factorial Model: Gender of

Standard Errors Shopper Shopper Agent Interaction
IID 12.50 8.42 4.97 3.85
One-Way: Agent 13.65 9.20 4.37 4.42
One-Way: Shopper 4.63 4.80 6.11 4.59
Two-Way 5.03 5.32 5.57 5.37
One-Way: Market 5.57 5.81 5.76 5.89

Table 3: False Positives in Audit Studies by Choice of Standard Errors: nS = 16, nA = 4, nM =
30, ρS = 0.05, ρA = 0.05, and ρM = 0.

Rejection Rate under Null
Gender of Factorial Model: Gender of

Standard Errors Shopper Shopper Agent Interaction
IID 5.93 4.53 8.32 3.67
One-Way: Agent 6.77 5.84 4.72 4.38
One-Way: Shopper 4.41 4.05 9.48 4.36
Two-Way 5.02 5.20 5.38 5.04
One-Way: Market 5.76 5.33 5.76 5.70
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Table 4: False Positives in Audit Studies by Choice of Standard Errors: nS = 8, nA = 8, nM = 30,
ρS = 0.05, ρA = 0.2, and ρM = 0.

Rejection Rate under Null
Gender of Factorial Model: Gender of

Standard Errors Shopper Shopper Agent Interaction
IID 6.64 4.34 11.5 2.54
One-Way: Agent 9.98 7.33 4.63 4.60
One-Way: Shopper 3.56 3.14 13.07 3.12
Two-Way 5.20 5.37 5.13 5.74
One-Way: Market 5.74 5.80 5.94 6.08

Table 5: False Positives in Audit Studies by Choice of Standard Errors: nS = 4, nA = 16, nM =
30, ρS = 0.05, ρA = 0.2, and ρM = 0.

Rejection Rate under Null
Gender of Factorial Model: Gender of

Standard Errors Shopper Shopper Agent Interaction
IID 11.92 6.70 6.76 2.22
One-Way: Agent 16.20 10.29 4.61 4.44
One-Way: Shopper 4.09 3.66 8.12 2.89
Two-Way 5.55 5.68 5.43 5.56
One-Way: Market 6.10 5.85 5.86 5.66

Table 6: False Positives in Audit Studies by Choice of Standard Errors: nS = 16, nA = 4, nM =
30, ρS = 0.05, ρA = 0.2, and ρM = 0.

Rejection Rate under Null
Gender of Factorial Model: Gender of

Standard Errors Shopper Shopper Agent Interaction
IID 4.57 3.25 19.79 2.15
One-Way: Agent 7.40 6.03 4.77 4.32
One-Way: Shopper 3.40 2.87 21.33 2.73
Two-Way 5.51 5.36 4.98 5.22
One-Way: Market 6.00 5.73 5.59 5.36
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Table 7: False Positives in Audit Studies by Choice of Standard Errors: nS = 8, nA = 8, nM = 30,
ρS = 0.2, ρA = 0.05, and ρM = 0.

Rejection Rate under Null
Gender of Factorial Model: Gender of

Standard Errors Shopper Shopper Agent Interaction
IID 20.74 11.96 4.54 2.51
One-Way: Agent 22.18 13.09 3.33 3.11
One-Way: Shopper 5.12 4.89 7.85 4.59
Two-Way 5.42 5.39 5.54 5.69
One-Way: Market 6.15 6.13 6.01 6.17

Table 8: False Positives in Audit Studies by Choice of Standard Errors: nS = 4, nA = 16, nM =
30, ρS = 0.2, ρA = 0.05, and ρM = 0.

Rejection Rate under Null
Gender of Factorial Model: Gender of

Standard Errors Shopper Shopper Agent Interaction
IID 32.49 20.26 3.33 2.27
One-Way: Agent 33.76 21.65 2.97 2.83
One-Way: Shopper 4.91 4.73 6.08 4.59
Two-Way 5.01 5.06 5.29 5.6
One-Way: Market 5.45 5.74 5.54 5.79

Table 9: False Positives in Audit Studies by Choice of Standard Errors: nS = 16, nA = 4, nM =
30, ρS = 0.2, ρA = 0.05, and ρM = 0.

Rejection Rate under Null
Gender of Factorial Model: Gender of

Standard Errors Shopper Shopper Agent Interaction
IID 11.49 7.07 6.75 2.72
One-Way: Agent 12.89 8.5 3.61 3.28
One-Way: Shopper 4.39 4.64 10.68 4.79
Two-Way 4.69 5.61 5.44 6.08
One-Way: Market 5.65 5.96 6.02 6.34
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