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Abstract

When risk preferences are heterogeneous, welfare can be improved by shifting covariate
shocks from risk averse to risk tolerant people in exchange for a premium. However, this
type of risk pooling depends on whether people prefer to share risk with others who have
similar risk preferences. To investigate this question, I use detailed data from Ghana to con-
struct village risk sharing networks and community detection to construct detected insurance
groups—which bound the scope of risk pooling. With econometric models of network forma-
tion, I estimate a preference to match on risk preferences in risk sharing networks. Within
detected insurance groups, the magnitude of assortative matching falls considerably. I build
a theoretical model of risk pooling with heterogeneous risk preferences where a planner al-
locates individuals to optimal risk pooling groups. I compare this allocation of types to three
benchmarks, including an optimal and worst-case scenario, finding that the observed net-
works deviate only slightly from optimal networks for this form of risk pooling.
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1 Introduction

The economic position of the rural poor is precarious, vulnerable to losses from both idiosyncratic
and covariate shocks (Ligon and Schechter, 2003; Günther andHarttgen, 2009; Collins et al., 2010).
Idiosyncratic risks include shocks like illness, loss of employment, and theft, or the loss of a fam-
ily member, that are uncorrelated between individuals or households in localities. In contrast,
covariate risks like output price and weather shocks are correlated among these individuals or
households. Despite the recent adoption of digital financial services in some markets, risk man-
agement tools to manage such risks are still missing for many (Demirguc-Kunt et al., 2018). This
fact may prevent risk taking which would result in higher incomes over the long term (Elbers
et al., 2007; Karlan et al., 2014). In the absence of formal financial markets, informal risk shar-
ing, mediated through social networks, is a common and important method of managing risk
(Fafchamps and Lund, 2003; Comola and Fafchamps, 2017).

The classic story of informal insurance is as follows: two people are seeking to insure their
consumption against idiosyncratic risks. If you lose your job, I pay you; If I lose my job, you pay
me. Evidence is often consistent with a high degree of idiosyncratic risk being insured, even in
light of information asymmetries (Kinnan, 2021). In contrast, insurance of covariate risks is less
well explored. When risk preferences are heterogeneous, informal insurance of covariate risk can
lead to welfare improvements by shifting risks from more risk averse to less risk averse agents
in exchange for a premium (Chiappori et al., 2014).1 In this story of informal insurance, the less
risk averse agent takes the hit in a bad year; In a good year, they receive the prize; and in all
years, they are rewarded by the more risk averse agent for taking on this risk. In essence, less
risk averse agents become local insurance companies for their peers.2

This story of covariate risk sharing, however, depends critically on the proximity of less and
more risk averse agents in risk sharing networks. In contrast, there is a tendency to connect to
those similar to oneself in social and economic networks (McPherson et al., 2001). This pattern
of positive assortative matching on risk preferences—or the tendency of those with similar risk
preferences to be connected in networks—arises as a barrier to covariate risk sharing (Attanasio
et al., 2012). Given the degree of assortative matching on risk preferences found in real world

1With the adoption of digital payment systems in recent years, it is important to delineate this story of covariate
risk sharing from digitally mediated inter-village risk sharing, which might also help cope with locally covariate risk
(Jack and Suri, 2014). For those who have adopted mobile money, what we think of as covariate shocks (droughts,
flooding, earthquakes) may become idiosyncratic (Blumenstock et al., 2016; Riley, 2018).

2While this paper abstracts away from the specific transactions that might allow for covariate risk sharing,
concrete notions of suitable arrangements can be found in the literature. For example, the literature on sharecropping
places sharecropping as a way for a more risk averse renter to pass risk to their less risk averse landlord (Stiglitz,
1974; Braverman and Stiglitz, 1986). Similarly, renters would need to be more risk averse than landlords (Allen and
Lueck, 1995). Sharecropping is relatively common in the context at hand, accounting for about 50% of rental contracts
(Goldstein and Udry, 2008).
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risk sharing networks, what quality of insurance can covariate risk sharing deliver? Empirically,
I study this question by asking if individuals form connections with others who have similar or
different risk preferences. In studying this question, I seek to understand how both the forma-
tion of risk-sharing network connections and local network structure (more broadly) constrain
covariate risk sharing.

Using econometric models of network formation, I estimate the degree to which agents match
with those who have similar risk preferences. To measure the degree of assortative matching on
risk preferences, I use rich microdata featuring income shocks, network ties, and risk prefer-
ences from a survey of four villages in rural southern Ghana (Barrett, 2009). This setting features
prominent correlated risk and the data includes a detailed social networks module and a set of
hypothetical gambles. I measure the risk sharing network in two ways. First, I construct a risk
sharing network using network trust and past gifts.3 Second, to capture local risk sharing that
might extend beyond direct network connections, I use community detection—clustering methods
which are sensitive to the details of network structure (Pons and Latapy, 2005; Newman, 2012)—to
extract tightly knit groups of individuals. In previous work, co-membership in such detected in-
surance groups predict membership in experimental insurance groups (Putman, 2020). Likewise,
previous work in this context estimates complete risk sharing among socially visible members
of the network, suggesting that broader network position may matter (Vanderpuye-Orgle and
Barrett, 2009). I back out risk preferences using hypothetical gambles, focusing on the coefficient
of absolute risk aversion as this allows for comparisons of variance in income to average losses.

I use estimates from several econometric models of network formation to characterize assor-
tative matching. These models use differences in risk preferences to explain connections in the
risk sharing and detected insurance groups. Dyadic regression, which treats dyads of individu-
als as the unit of study, serves as a reduced form approach to estimating assortative matching
in risk preferences (Graham, 2020). Using this model, I estimate that individuals prefer to as-
sortatively match on risk preferences in the risk sharing network. That is, they prefer to match
with individuals who have a similar degree of risk aversion.4 Additionally, I find they are robust
to alternative network formation models and modeling choices, including Subgraph Generation
Models (SUGMs) (Chandrasekhar and Jackson, 2021). In addition to estimating SUGMs, I esti-
mate tetrad logit, a model designed to account for degree heterogeneity (Graham, 2017), where I
find consistent results. The results are also robust to alternative specification choices particularly

3Despite not using a direct measure of risk sharing links, I find evidence consistent with the idea that these
networks are used for risk sharing as opposed to more prosaic favor exchange. This analysis uses risk sharing
transfers (gifts and loans) during the period of the study, using researcher run lotteries as shocks.

4My preferred results are conditional on controlling for the sum of risk aversion, though differences are small.
Controlling for the sum of risk aversion so solves a subtle omitted variable problem by controlling for a correlation
between popularity and risk aversion.
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estimation as a logistic regression and controlling for a large set of dyadic characteristics.5

As I move from risk sharing network to co-membership in detected insurance groups, assorta-
tivematching on risk preferences falls. In particular, using dyadic regression, I fail to find evidence
for assortative matching in detected insurance groups.6 Likewise, when estimating SUGMs, I find
that the magnitude of assortative matching is attenuated in the detected insurance groups vis a
vis the risk sharing network. In other words, detected insurance groups feature more diverse
matching of risk preferences than risk sharing networks.

What are the welfare impacts of this degree of assortative matching? To translate my esti-
mates of assortative matching into concrete welfare estimates, I construct a theoretical model of
optimal risk sharing in a village setting. In this model, I abstract away from the question of match-
ing to focus on how a planner allocates individuals subvillage groups.7 While idiosyncratic risk
is assumed to be fully pooled at the group level, covariate risk is not. The social planner assigns
individuals to two risk pooling groups according to their risk aversion in order to optimally share
covariate risk. According to this model, optimal risk pooling happens when the composition of
the groups reflects the composition of the village with respect to risk aversion. For example, if
the village is made up of 50% less risk averse individuals, you would prefer each group to also
be made up of 50% less risk averse individuals. Consistent with the intuition of the empirical
work, this result implies that optimal risk pooling should feature no assortative matching on risk
preferences.

I divide individuals into more and less risk averse types and quantify the welfare implications
of their allocation of types in insurance groups. To do this, I simulate four scenarios which vary by
their degree of assortative matching (and therefore optimality): (a) an optimal scenario (i.e., with
no assorative matching) (b) detected insurance groups (i.e., with assortative matching implied by
the detected insurance groups), (c) risk sharing networks (i.e., assorative matching as implied by
risk sharing networks), and (d) a worst case scenario (i.e, with complete assortative matching).
(a) and (d) are determined by the theoretical model derived earlier, while (b) and (c) derive from
SUGM estimates. I structure the SUGMs to estimate assortative matching between types so that
I can translate estimates of assortative matching to estimates of composition, as used within the
theoretical model. I find substantial differences between the optimal and worst case scenario,
with the insurance group and risk-sharing network scenario both falling close to optimal. First,
despite the observed assortative matching, I find that the observed networks tend to be close
to optimal networks already. I.e., if 0% is the worst case scenario, and 100% is the optimum,

5These controls include demographics, occupation, education, and (family) network centrality.
6As I do with the risk sharing network, I replicate these results using alternative specifications including LPM

with controls, using dyadic logistic regression, and using tetrad logit.
7While of course a planner would want a single group, I constrain them to two groups as this mimics local risk

sharing in villages.
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observed assortative matching in networks places us 75% of the way to the optimum. As one
might expect, detected insurance groups function better for covariate risk sharing than the risk
sharing networks. However, if I use full covariate insurance as a benchmark, even the optimal
scenario has losses equal to 16.5% of per capita consumption.

This work contributes to the present understanding of covariate risk sharing by situating it
within the context of local network structure. Recent work has suggested the potential for co-
variate risk sharing. For example, Chiappori et al. (2014) find considerable heterogeneity in risk
preferences under the assumption that risk sharing arrangements are complete within villages.
An implication of their model is that less risk averse agents might take on more of the covariate
risk in exchange for some increase in consumption over the long term. By relaxing the assump-
tion of risk sharing at the village level, I am able to examine the relationship between network
structure and the welfare dervied from covariate risk sharing.8

This work also contributes to the empirical study of assortative matching on risk preferences
in social networks, and to my knowledge is the first evidence of assortative matching on risk
preferences in village risk sharing networks.9 This reflects estimates from Attanasio et al. (2012)
which find assortative matching in a risk pooling experiment done in the lab. Beyond replicating
these results, the current work provides evidence of assortative matching on risk preferences
in both real world risk sharing relationships and in a new country context, strengthening the
external validity of this empirical result.10

Finally, these results contribute to the greater policy discussion on economic development and
globalization. First, growing adoption of financial services in lower and middle income countries
may have unintended consequences for risk sharing networks (e.g., Dizon et al., 2019; Dupas
et al., 2019; Banerjee et al., 2022). By quantifying the importance of network structure, I reveal
an important facet of the the net welfare effects of access to financial services. Second, climate
change and growing interconnections in trade and financial systems may increase the scale of
crises (Stiglitz, 2003; Zscheischler et al., 2018; Elliott and Golub, 2022). A greater scale of crises,
exemplified by the COVID-19 pandemic, makes such covariate risk sharing all the more dear.

8More broadly, this work contributes to the study the risks insured by informal risk sharing networks and the
constraints faced due to assortative matching: Gao and Moon (2016) and Jaramillo et al. (2015) study heterogeneity
in risky endowments, while Xing (2020) studies heterogeneity in autocorrelation of (idiosyncratic) risk.

9In contrast to other dimensions, such as geography, wealth, religious affiliation, clan membership, and kinship
(De Weerdt, 2002; Fafchamps and Gubert, 2007).

10Interestingly, these estimates are consistent with models of assortative matching on risk preferences in the
presence of idiosyncratic risk sharing (Attanasio et al., 2012; Wang, 2015).
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2 Data and Context

2.1 Risk Coping and Social Networks in Rural Ghana

I study risk sharing networks in rural southern Ghana. The data comes from four villages in
southern rural Ghana. I utilize the 2009 household survey, which includes 633 individual respon-
dents across the four villages. This data was collected over five rounds spaced at two month
intervals over the year. The survey was designed as a husband and wife survey (Walker, 2011b).
Households were randomly selected in each village, with a target of 70 husband-wife households.
However, single-headed households are retained in the sample, so the number of households ex-
ceeds 70. This accounts for between 12-40% of households in each these villages. In addition to
social and risk sharing networks, the survey also asked about income shocks, and elicited risk
preferences (Barrett, 2009; Walker, 2011a). Further technical details, including the survey instru-
ment itself can be found in Walker (2011b).

These villages face significant covariate risk, in particular from the pineapple export market
(Conley and Udry, 2010; Walker, 2011b). Risk management is a key feature of these markets,
where farmers use many strategies to manage risk. For example, Suzuki et al. (2011) documents
partial vertical integration in pineapple markets in Ghana, explaining it is a strategy for small-
holders to equip themselves to manage this risk through the use of local secondarymarkets. More
relevant to this study, risk management within the villages includes substantial usage of informal
networks (Udry and Conley, 2005; Walker, 2011a). A number of other empirical studies document
features of the networks in this setting: Vanderpuye-Orgle and Barrett (2009) studies socially in-
visible members of the villages, and finds that risk pooling does not insure them as well as their
richer, more socially visible counterparts. Within households, Castilla and Walker (2013) finds
spouses behave non-cooperatively, hiding income through gifts to their networks.

2.2 Variable Construction

2.2.1 Risk Sharing Network

I will draw on graph theory to define and visually represent risk sharing networks. A graph g is
a set of nodes and an edgelist (which naturally contains edges). I refer to these nodes and edges
by their subscripts. I subscript nodes by i. For edges, I use the combination of subscripts i and
j to refer to that edge: if there is a connection between i and j, I say ij ∈ g, hence ij is in the
edgelist. An adjacency matrix represents these nodes and edges in an n × n matrix A = A(g).
For the scope of this paper, I work with unweighted graphs. Thus aij = 1 if ij ∈ g and 0 if not
for all i, j. Additionally, for the majority of analyses, I work with undirected graphs, where the
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Table 1: Summary of Risk Sharing Network and Shocks by Risk Preferences

More Risk Averse Less Risk Averse Risk Loving
Panel A: Network Statistics

Average Degree 4.62 6.61 4.79
(5.14) (7.20) (5.19)

Prop. Isolates 0.09 0.09 0.159
(0.29) (0.28) (0.37)

Average Clustering 0.25 0.23 0.23
(0.30) (0.24) (0.29)

Average Betweenness 86.0 119.5 99.9
(150.4) (212.1) (210.1)

Panel B: Income Shocks
Average Net Losses 10.7 33.1 93.2

(404.7) (278.9) (404.6)

Prop. Net Gain 0.34 0.35 0.27
(0.48) (0.48) (0.45)

Prop. Net Loss 0.19 0.28 0.29
(0.39) (0.45) (0.46)

N 236 217 82
For averages, standard errors are reported in parentheses below. 98 individuals who did not participate
in the hypothetical gambles are excluded here. Risk loving have η̂i ≤ 0, less risk averse (type 1) have
0 < η̂i < ηsplit ≈ 0.003, andmore risk averse (type 2) have η̂i ≥ ηsplit. Panel A: Degree is the number of other
nodes directly connected to a node, dj =

∑N
j=1 aij . Isolates are nodes with degree zero. Clustering is the

average local clustering coefficient, which answers the question: for individual i connected to j and k, what
proportion of the time are j and k also connected? Formally, clusteringi = 1

di(di−1)

∑N
j=1

∑N
k=1 aijajkaik .

Betweenness centrality is the sum of shortest paths between other nodes in the network on which that node
lies. Panel B: Shocks are unexpected losses or gains to income reported by the respondents summed up over
individuals. I omit one outlying value for the tabulation of mean and variance, a net loss of about 48,000
Ghanaian Cedis reported by a type 2 (more risk averse) household.

adjacency matrix is symmetric: aij = aji. The diagonal aii = 0 by construction.11

To construct the risk sharing network, I use questions related to gifts and trust. Two nodes
are connected when they both report reciprocal gift exchange in the past and also would trust
the other to take care of a valuable item for them. This definition includes these two network

11Nodes and edges go by many other names. In the case of risk sharing, nodes represent agents and edges
represent the social connections between those agents. I will use “agents” and “individuals” interchangeably when
referring to nodes in the network. Likewise, I will use “links” and “connections” interchangeably when referring to
edges. Dyads are not interchangeable, however: dyads are all possible combinations ij regardless of whether that
edge exists in the network.
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questions as they are closely related to risk sharing, and emphasizes the importance of recipro-
cal ties in risk sharing (Fafchamps and Lund, 2003; Blumenstock et al., 2016). Formally, aij =

trustij × giftij where trustij = 1(i trusts j)× 1(j trusts i) and giftij = 1(i reports giving to j)×
1(i reports receiving from j)× 1(j reports giving to i)× 1(j reports receiving from i). For more
detail on network elicitation and construction, see Appendix A.1 and Appendix A.2, respectively.

To check that these networks are related to risk sharing transfers (as opposed to more prosaic
favor exchange), I test the response of transfers (i.e., gifts and informal loan disbursements) during
the study period to to researcher run lotteries, finding that transfers seem to be responsive to
these along the channels of the risk sharing network. While the effect is noisy due to data issues,
I find evidence consistent with the notion that these networks are capturing risk sharing. A full
description of this exercise and results can be found in Appendix A.3

Table 1 presents summary statistics about the risk sharing networks. When comparing less
and more risk averse individuals there are differences in both degree and betweenness central-
ity. In particular, less risk averse individuals have higher degree—more risk sharing connec-
tions. Likewise, they have higher betweenness centrality—holding positions which bridge be-
tween other nodes—suggesting their importance in the routing of gifts and transactions through
the network. This is both an unexpected and important feature of the data. Theory might pre-
dict that those with higher risk aversion would be central in risk sharing networks, reflecting a
demand for insurance and issues of moral hazard (Jaramillo et al., 2015). Furthermore, hetero-
geneity in degree by underlying type can confound estimates of assortative matching (Graham,
2017). Despite these differences, it’s interesting to note that the difference in clustering between
less and more risk averse individuals would appear to be economically small.12

I also include summary statistics about income shocks faced by individuals in the sample in
Table 1. While I caution against a strictly behavioral explanation for these shocks, some inter-
esting patterns emerge. First, the risk averse (both type 1 and type 2) have limited downside
exposure relative to their upside exposure. Second, the variation in shocks among the less risk
averse and risk loving is larger than those for the more risk averse. Despite this, those who are
more risk averse face more downside risk than and have greater net losses those who are less risk
averse, an important reminder that exposure to shocks depends on circumstances outside of risk
preferences.

12Though it is beyond the scope of the current work, one might interpret this as a difference in linking social cap-
ital without an accompanying difference in bonding social capital. In terms of detected insurance groups discussed
later, this might also suggest that less risk averse individuals might be more likely to serve as liaisons between
detected insurance groups.
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(a) A stylized risk sharing network with (latent to
the econometrician) insurance groups denoted by
red and blue.

(b) Insurance groups: co-membership links occur
within detected insurance group.

(c) The difference in network representations:
green links are present in the insurance group but
not the network, while orange are present in the
network but not insurance groups. There is one ad-
ditional connection within the red group and one
less between the red and blue groups.

Figure 1: A stylized example of risk sharing networks, insurance groups and the differences in
their network representations.

2.2.2 Community Detection and Insurance Groups

While canonical work on informal insurancemodeled risk sharing at the village level (e.g., Townsend,
1994), empirical work has shown that risk sharing is mediated by interpersonal relationships
(Fafchamps and Lund, 2003). However, both theoretical and empirical work suggest that broader
network position may matter. First, Being central overall in networks may improve risk sharing
overall (Vanderpuye-Orgle and Barrett, 2009). Second, transfers flowing through networks may
contribute to one’s insurance pool (De Weerdt and Dercon, 2006; Henderson and Alam, 2022).
Conversely, where networks are sparse information asymetries may lead to barriers in such flows
of transfers (Bloch et al., 2008; Ambrus et al., 2014). Third, broader network structure may drive
new risk sharing connections (Putman, 2020).

I use community detection to detect insurance groups using network data (Newman, 2012)
in order to characterize agents broader network position. Community detection aims to assign
nodes to modular communities, which we call detected insurance groups. In our case, a good
community assignment is one where most risk sharing connections fall within the community
with only a few of the connections fall between communities. Such detected communities have
shown to be predictive of risk sharing group formation in experimental settings (Putman, 2020).

My approach to uncovering communities is based on random walks through the network: A
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randomwalker moves from node to node in the network by way of edges, randomly selecting the
next node it visits among those in the network neighborhood. In particular, I use the Walktrap
algorithm, which uses these random walks to determine the similarity between nodes by the
destinations of random walkers originating at that node (Pons and Latapy, 2005). The intuition
is that these random walks will become trapped in tightly knit sections of the local network,
meaning the algorithm will see nodes in tightly knit sections of the network as interchangeable
and therefore group them together. Further discussion of this algorithm for risk sharing networks
can be found in Appendix A.4.

I assign individuals to insurance groups using Walktrap community detection on the risk
sharing network with walks of four steps.13 For a visualization of the resulting community de-
tection, see Figure A1. After I have assigned nodes to communities, I construct a network which
indicates co-membership in an insurance group using these community assignments. If insur-
ance takes place within these groups and not between them, this would represent the relevant
risk sharing relationships.14 I represent co-membership in detected insurance groups using an
adjacency matrix C where cij is an indicator variable for if i and j are in the same detected in-
surance group. Like the adjacency matrix, C is symmetric. The difference in construction of the
bilateral risk sharing network and detected insurance groups is depicted in Figure 1.

2.2.3 Risk Preferences

I use four hypothetical gambles to measure individuals’ risk aversion, which ask respondents to
choose between a sure payment YA and a risky gamble YB . These gambles are presented in both
the gains and losses domains, and with variation in the sure and variable payments. The first two
menus presented are in the gains domain. In the first menu, the risky gamble YB is held fixed
while the sure payment YA is increased. In the second menu, the sure payment is held fixed while
the upside of the risky gamble is reduced. The third and fourth menus reflect the first and second
set onto the losses domain.

To translate these hypothetical gambles into coefficients of risk aversion, I match assumptions
to the theoretical model presented in Section 5. First, I assume YB is normally distributed and
second that individuals exhibit Constant Absolute Risk Aversion (CARA, or exponential prefer-
ences). These assumptions allow for a mean-variance representation of expected utility, which is
crucial for the later welfare results (Sargent, 1987).15 I compute η̂i for each menu and individual

13Longer walks tend to result in larger communities relative to shorter walks. I opt for the default of four steps.
14Relatedly, the theoretical results in Ambrus et al. (2014) suggest we would expect non-zero but small amounts of

risk sharing between islands—which might tend to form ex post within ex ante communities. Likewise, the empirical
results in Putman (2020) suggest very little risk sharing across detected insurance groups.

15In particular, it allows for the comparison of average incomes to the variance in income.
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Most 
Risk Loving

Risk Neutral

Split

Most 
Risk Averse

Figure 2: Risk sharing networks in the village of Pokrom with constant absolute risk aversion
coefficients indicated by color (transparent nodes are those who did not participate in the risk
aversion module). ‘Split’ refers to ηsplit (≈ 0.003), the coefficient value that distinguishes type 1
(more risk averse) agents from type 2 (less risk averse) agents. See Figures A4, A5, and A6 for
other villages. For the distribution of risk preferences, see additionally Figure A2 which features
a matching color coding.

using the sample analogue of the expression:

ηi =
2(E(YB)− YA)

V (YB)
(1)

Finally, to combine these into measures of risk aversion, I average over menus. To check the as-
sumption of asymptotic normality, I also compute CARA coefficients without making this distri-
butional assumption and with an alternative order of computation. The assumption of normality
has almost no effect on the computed CARA coefficients, while changing the order of computa-
tion results in nearly co-linear but larger coefficients of risk aversion. Precise details of how each
coefficient is computed and comparisons are available in Appendix A.5.

Coefficients of Absolute Risk Aversion are plotted over the risk sharing network for one ex-
ample village in Figure 2. Additionally, the distribution of coefficients and definition of types is
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plotted in Figure A2. Of those in the network who answered the elicitation module, I split these
individuals into three groups: risk loving, less risk averse, and more risk averse. Risk loving are
those with ηi < 0. This accounts for about 20% of the individuals with preferences. I split the
remaining risk averse individuals into evenly sized groups of approximately 40% each, with more
risk averse individuals being above a cut-point, ηsplit ≈ 0.003.16

3 Empirical Strategy

In this section I describe the twomain econometric models of network formation I use to estimate
assortative matching on risk preferences. Each serves a different purpose within the paper. First,
dyadic regression serves as a reduced form approach to describe assortative matching in the data.
Its inclusion is beneficial as it allows for familiar exposition and interpretation as well as lending
itself more easily to tests of robustness and comparison with past literature.17 Second, SUGMs
serve to estimate assortative matching on risk preferences in a way that can be translated into
the composition of risk sharing groups as is specified in the theoretical model.

3.1 Dyadic Regression

3.1.1 Risk Sharing Networks

To establish the degree of assortative matching on risk preferences, I will start by estimating
dyadic regressions, an econometric model of network formation. In these regressions, each pair
of nodes is treated as an observation. The most parsimonious model regresses risk sharing con-
nections on differences in measured risk aversion,

aij = β0 + β1|ηi − ηj|+ εij (2)

where aij is an indicator for if i and j are connected in the risk sharing network, ηi is the risk
aversion of individual i, and εij is the error term. Note that all variables enter symmetrically:
aij = aji (as the adjacency matrix A is symmetric) and explanatory variables are computed as
to enter symmetrically (Fafchamps and Gubert, 2007). A negative estimate of β1 is evidence of
assortative matching, i.e., that individuals prefer to share risk with individuals who have similar
risk preferences to their own.

A second specification includes the sum of risk aversion ηi and ηj to control for the correlation
between risk aversion and popularity, a difficult feature of the current cross-sectional setting.

16It is difficult to split the remaining risk averse individuals into exactly even groups, and the less risk averse
group tends to be slightly larger in practice.

17In particular, I note similarities and differences between these results and those found in Attanasio et al. (2012).
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Where one or both have low risk aversion, I would expect these agents to be more popular and
hence have a higher probability of forming a link.18 Whereas, in a panel setting, I might use a
fixed effects approach to account for degree heterogeneity, in this setting I rely on selection-on-
observables.19 Specifically, I control for the sum of risk aversion:

aij = β0 + β1|ηi − ηj|+ β2(ηi + ηj) + εij (3)

A positive estimate of β2 suggests that individuals who are more risk averse are less likely to link
to each other. Furthermore, I take estimates of β1 using this strategy as my preferred estimate of
assortative matching from the dyadic regressions.

3.1.2 Heterogeneity by Family Ties

I examine how assortative matching varies by family ties. Family is interesting because it serves
as a longstanding relationship. This means there may be a higher propensity to link overall, but
also more information about potential risk sharing partners. We document the former in our
third specification:

aij = β0 + β1|ηi − ηj|+ β3Familyij + εij (4)

where family is an indicator variable equal to one if i and j report being kin. A positive estimate
of β3 suggests that family are more likely to be connected within the risk sharing network. A
fourth specification combines specifications (2) and (3) to add the ad hoc control.

aij = β0 + β1|ηi − ηj|+ β2(ηi + ηj) + β3Familyij + εij (5)

Finally, a fifth specification introduces interactions between the difference in coefficients of risk
aversion and family ties to understand this heterogeneity.

aij = β0 + β1|ηi − ηj|+ β2(ηi + ηj) + β3Familyij + β4Familyij × |ηi − ηj|+ εij (6)
18There are three basic stories about what might cause risk preferences to be correlated with popularity. First,

risk preferences could be correlated with unobservable personality traits. For example, it could be that less risk
averse agents differ in personality traits not directly related to risk preferences. Second, economic decision-making
specifically involving risk might alter someone’s fortunes and thus their social standing. If those with lower risk
aversion make riskier, higher reward decisions, this may be parlayed into income growth and higher SES in the
long term (Elbers et al., 2007; Karlan et al., 2014). Third, though I have assumed constant absolute risk aversion, it
is plausible that having better social standing could make a person less risk averse e.g., in a model of decreasing
absolute risk aversion. A fourth issue is also at play: even when risk aversion is not correlated with popularity, as
outlined in Graham (2017), a person well connected to all types might be measured as not harboring a preference
for similar risk-preferenced others when in fact they do.

19Notably, Graham (2017) introduces an approach to control for degree heterogeneity in cross sectional settings
which relies on combinations of data where fixed effect terms “net out” of the estimation, which I include as a
robustness check.
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A negative estimate of β4 is evidence that assortative matching is stronger among family mem-
bers. Moreover, if β1 + β4 is negative, this provides evidence that within family members, risk
aversion is an important determinant of risk sharing connections. This might suggest greater
information about others’ preferences driving matching, as in Attanasio et al. (2012).

3.1.3 Detected Insurance Groups

It is also interesting to see how assortative matching changes in detected insurance groups. I
re-estimate the above dyadic regressions with the network representation of detected insurance
groups as the outcome: In all of the above specifications, I replace aij with cij , the ijth entry of
C , the matrix denoting co-membership in a detected insurance group. cij = 1 if i ̸= j are in
the same detected insurance group, and 0 otherwise. If we treat detected insurance groups as
actual groups (legible to participants, but not to the econometrician), such a specification might
accord with a coalition formation game with simultaneous announcement like those in Hart and
Kurz (1983).20 Within this framework, The dyadic regression coefficients on the difference in risk
aversion can be interpreted within this framework as measures of assortative matching. Outside
of such a framework, we can think of these estimates as capturing local network structure, as
opposed to choice of partners.

3.1.4 Estimation and Standard Errors

I estimate these dyadic regressions as linear probability models without controls. However, I
include a number of robustness checks which are detailed in Appendix A.6. Importantly, er-
rors are non-independent in dyadic regressions. In particular, the residuals of dyads involving
a particular node might be arbitrarily correlated.21 To correct standard errors for this type of
non-independence, I use dyadic robust standard errors (Fafchamps and Gubert, 2007; Cameron
and Miller, 2014; Tabord-Meehan, 2019).

3.2 Subgraph Generation Models

3.2.1 Intuition

A useful tool for understanding risk sharing networks and insurance groups is called a Subgraph
Generation Model (SUGM). SUGMs treat networks as emergent properties of their constituent

20These models are not unlike those of pairwise stability found in Jackson and Wolinsky (1996). For example, in
one game, to form a coalition, all members of the coalition must announce the same list of names, meaning they can
exclude players by not including them in their list.

21Formally, it may be the case that Cov(εij , εlk) ̸= 0 if i = l, i = k, j = l, or j = k.
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subgraphs.22 A subgraph (sometimes called an induced subgraph) of a graph is the graph ob-
tained from taking a subset of nodes in the graph and all edges connecting those nodes to each
other. For example, for a subset of two nodes in a graph, the subgraph will be either a link or
two unconnected nodes. For three nodes, the subgraph might be a triangle (a trio of nodes all
connected by edges), a line (one central node connected to the two others), a pair and an isolate
(two nodes connected and one unconnected), or an empty subgraph (three unconnected nodes).
I focus on connected subgraphs for the SUGM. In a three node example, this means I leave aside
pairs, isolates, and the empty subgraph, focusing on the triangle and the line. Likewise, while a
link is a subgraph of interest, two unconnected nodes is not.

3.2.2 Links and Isolates Subgraph Generation Model with Risk Preference Types

Like dyadic regression, SUGMs are estimated to understand how individuals of different risk pref-
erences connect to each other. However, for these estimates I build the SUGMs to estimate the
affinity within and between risk preference types. This allows me to recover the composition
of detected insurance groups in terms of risk preferences in order to assess the welfare impli-
cations of assortative matching.23 I estimate SUGMs with both links and isolates, differentiated
by types, which I base on risk preferences. There are two models of interest: a baseline model
and a preference model. I start with the baseline model. For various reasons, a small subset of
individuals in the network did not participate in the survey module I use to recover risk prefer-
ences.24 Additionally, in the model, I study risk sharing among only those who are risk averse. I
term both those who were not surveyed and those who have risk loving preferences as nuisance
nodes. Therefore, to understand the baseline rate of subgraph generation among the risk averse,
I estimate a model with two types. I estimate coefficients for five features: isolates of risk averse
nodes, isolates of nuisance nodes, links within nuisance nodes, and links between risk averse and
nuisance nodes. I refer to the second model to as the preference model. I estimate the full model
with less risk averse, more risk averse, risk loving, and non-surveyed types for a total of four
types. This includes isolates of each type, links within each type, and links between each pair of
types for a total of 14 features.

22While Exponential Random Graph Models have a similar motivation, they do not succeed at reconstructing
graphs with any success. They depend on an assumption of independence of links. If this independence does not
hold they are not consistent (Chandrasekhar and Jackson, 2021). To the contrary, many studies of risk sharing would
expect links are dependent on each other. See for example Jackson et al. (2012).

23In the case of the detected insurance groups, I am actually recovering my estimate of assortative matching on
risk preferences from the composition of detected insurance groups. In contract, in the risk sharing network it comes
from the assortative matching measure itself. This is because of the assumptions used in building detected insurance
groups.

24Some of these individuals were not surveyed at all, but appear in the network. Others may be part of the
sample who were not interviewed in that particular round or module. I leave them in the network, consistent with
recommendations from Smith et al. (2022).
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I directly estimate the parameters using an algorithm given by Chandrasekhar and Lewis
(2016) and Chandrasekhar and Jackson (2021). Estimating a SUGM directly is essentially estimat-
ing the relative frequency of various subgraphs in a network. However, I can’t stop at simply
estimating the features. Because networks are the union of many subgraphs, subgraphs might
overlap and incidentally generate new subgraphs. For example, three links placed between ij, jk,
and ik would incidentally generate a triangle. To estimate the true rate of subgraph generation, I
order subgraphs by the number of links involved in their construction. Then, I compute the num-
ber of subgraphs generated of that type, but only if they are not a portion of a larger subgraph
(that is, one composed of a greater number of nodes). For subgraphs of the same size, order is ar-
bitrary, but must exclude occurrences of this subgraph incidentally generated by other subgraphs
which are further along in the order. For example, for a SUGM featuring links and triangles, I
order links first, triangles second, etc. While counting links and potential links, I neglect pairs of
nodes ij if jk and ik are in the graph.25 More estimation details can be found in Appendix A.7.1.

3.2.3 Pooled Subgraph Generation Models

Asmy data has four unrelated networks, I need tomake choices as to how to handle thesemultiple
networks in the SUGM. One approach would be to estimate a subgraph generation model for each
village and average the coefficients of these. A different strategy, and one that relies on the same
asymptotics as the single network case from Chandrasekhar and Jackson (2021), is to pool the
counts and potential counts from the villages to estimate a single coefficient across the villages.
This leads to an adjusted class of SUGMs I term Pooled SUGMs. To do so, I cannot simply combine
the networks and run the SUGM. For example, it is unlikely that the dyads that would occur
between villages would be reasonable potential dyads. Hence, I need to collect counts of features
and potential counts of features in all four villages before combining. Details of this modification
can be found in Appendix A.7.2.

3.2.4 Differences in Assortative Matching

These SUGM estimates give me a way to test for assortative matching between risk sharing net-
works and detected insurance groups. However, the risk sharing network and network of co-
membership in detected insurance groups have different degrees of attachment. To make an
apples to apples comparison, I normalize my results by taking the ratio of Preferences SUGM
coefficients to Baseline SUGM coefficients. I focus on the coefficients for within links for type
1 agents, within links for type 2 agents, and links between type 1 and 2 agents. For all three,

25If I added lines of three nodes, I could order these before or after triangles. Ordering lines before triangles I
would look at potential links ij and jk where ik is not in the graph. Likewise, I would need to remove pairs of nodes
ij if jk or ik are in the graph.
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I divide by the coefficient on links within any risk averse agents from the baseline model. This
yields an excess affinity for connections among these dyads. Doing this for both the detected
insurance group coefficients and the risk sharing network coefficients, I can compare between
the models. See appendix A.7.3 for details, including a conservative analytic approximation of
standard errors.

Table 2: Dyadic Regression: Risk Sharing Network

Match Between i and j in Risk Sharing Network
(1) (2) (3) (4) (5)

|ηi − ηj| -0.00454∗ -0.00564∗ -0.00337 -0.00510∗ -0.00427∗
(0.00218) (0.00250) (0.00179) (0.00214) (0.00193)

ηi + ηj -0.00124 -0.00196 -0.00195
(0.00181) (0.00164) (0.00164)

Familyij 0.285∗∗∗ 0.285∗∗∗ 0.298∗∗∗
(0.0156) (0.0156) (0.0196)

Familyij × |ηi − ηj| -0.0133
(0.0107)

Village FE Yes Yes Yes Yes Yes
Other Controls No No No No No
N dyads 71052 71052 71052 71052 71052
R2

Dyadic robust standard errors reported in parentheses (Fafchamps and Gubert, 2007). All specifications are dyadic
linear probability models with matching in the risk sharing network as the dependent variable. ηi is risk aversion
of individual i, so |ηi − ηj | is the absolute difference of risk aversion while ηi + ηj is the sum. Both absolute dif-
ferences and sums of risk aversion are transformed into z-scores. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

4 Results

4.1 Dyadic Regression

4.1.1 Risk Sharing Network

Table 2 reports the results from estimating the dyadic regression specifications. I include vil-
lage level fixed effects in all dyadic regression specifications, though this does not affect the
magnitudes estimated. Reported t-statistics are computed using dyadic robust standard errors
(Fafchamps and Gubert, 2007). To make results more interpretable, I transform risk preferences
into z-scores before computing regressors, so β1 estimates the effect of a one-standard deviation
absolute difference in risk aversion.
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Columns (2) and (5) present my preferred specifications. Across all specifications I see nega-
tive estimates for the effect of difference in absolute risk aversion on the likelihood of linking in
the risk sharing network. In column (1) when the sum of risk aversion is omitted from the model,
the estimates is somewhat smaller than when risk aversion is controlled for, and in column 3,
the estimate is insignificant. In contrast, proxying for degree with the sum of risk aversion in
columns (2), (4) and (5) yields a negative and significant estimates (at the 5% level), which I inter-
pret as evidence of assortative matching on risk preferences. In particular, focusing on column
(2) I estimate a one standard deviation difference in risk aversion leads a 0.56 percentage point
reduction in the probability of connection.

As in other contexts, family connections are a strong determinant of co-participation in the
risk sharing network. Across specifications (3), (4), and (5), having a family connection is posi-
tively associated with connection in the risk sharing network (statistically significant at the 0.1%
level). In column 5, family member dyads are 29.8 percentage points more likely to form a risk
sharing relationship than non-family members.

In columns (4) and (5), when I control for family connection and risk aversion, the estimate
of β1 falls. However, this may speak more to the mechanism of assortative matching. Similar to
Attanasio et al. (2012), I would expect assortative matching on risk aversion to play a stronger
role formore socially proximate individuals who havemore information about each others prefer-
ences. In column 5, I have β̂1+β̂4 = −0.0176, however this estimate is not statistically significant
as the interaction term, while negative, tends to be quite noisy (χ2(1) = 2.46, p = 0.12). Inter-
preting the coefficient, a one standard deviation difference in risk aversion is associated with a
reduction in the probability of linkage by 1.33 percentage points between family members. This
could suggest stronger assortative matching when more information about risk preferences in
available, but the results are not conclusive.

4.1.2 Detected Insurance Groups

Table 3 reports the results from re-estimating equations with co-membership in a detected insur-
ance group as the outcome of interest. The estimates of β1 are similar in magnitude to those in
the risk sharing network. However, none are statistically significantly different from 0 at stan-
dard significance levels. Hence, I fail to find evidence for assortative matching in the detected
insurance groups. Heterogeneity by family connections may provide some clues as to the dif-
ferences. In particular, in column (5), β1 + β2 = −.0049 is not significantly different than zero
(χ2(1) = 0.1). These results suggest individuals’ ability to select risk sharing partners falls to
almost nothing as they place themselves into broader networks, and reflects only the shadow of
the choices made in their personal connections.
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Table 3: Dyadic Regression: Detected Insurance Groups

i and j are Co-members in Detected Insurance Group
(1) (2) (3) (4) (5)

|ηi − ηj| -0.00668 -0.00651 -0.00557 -0.00600 -0.00607
(0.00485) (0.00543) (0.00453) (0.00517) (0.00511)

ηi + ηj 0.000189 -0.000489 -0.000490
(0.00426) (0.00407) (0.00407)

Familyij 0.269∗∗∗ 0.269∗∗∗ 0.268∗∗∗
(0.0205) (0.0206) (0.0257)

Familyij × |ηi − ηj| 0.00113
(0.0151)

Village FE Yes Yes Yes Yes Yes
Other Controls No No No No No
N dyads 71052 71052 71052 71052 71052
R2

Dyadic robust standard errors reported in parentheses (Fafchamps and Gubert, 2007). All specifications are dyadic
linear probability models with matching in the risk sharing network as the dependent variable. ηi is risk aversion
of individual i, so |ηi − ηj | is the absolute difference of risk aversion while ηi + ηj is the sum. Both absolute dif-
ferences and sums of risk aversion are transformed into z-scores. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

4.1.3 Addressing Threats to Validity

Before moving on to the results of the Subgraph Generation Models—which echo the results pre-
sented above—it is useful to address threats to validity for the dyadic regression results presented
here. Quantitatively, the coefficients in Tables 2 and 3 tend to be robust to controlling for de-
mographic factors and network centrality. That is, I find a similar degree assortative matching
on risk preferences when controlling for the sum of risk aversions, and this assortative match-
ing attenuates in the detected insurance groups. However, this finding comes with the caveat
that these regressions have smaller and noisier effects, so that significance fades to some degree.
Nevertheless, the magnitude of assortative matching tends to be consistent, suggesting a real—if
subtle—relationship. See Appendix A.6.1 for detailed results using this selection-on-observables
approach for the linear probability model. Likewise, results are robust to choice of specification.
Appendix A.6.2 presents results from dyadic logistic regression, which echo those from the linear
probability models.

To be sure I can justify using sum of risk aversion as an ad hoc control for popularity, I utilize
a network formation model termed tetrad logit, which is designed to account for correlations
between heterogeneity in degree and type when estimating assortative matching (Graham, 2017).
Intuitively, this method selects tetrads of nodes (sets of four nodes and their connections) which
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Table 4: Links and Isolates Pooled Subgraph Generation Model: Coefficients of Interest from
Baseline and Preferences Models and Coefficient Ratios.

Risk Sharing Network Detected Insurance Groups
Model, Subgraph Stat. Std. Err. Stat. Std. Err.
Baseline SUGM Coef.
Within: All Risk Averse 0.0404 0.0009 0.0928 0.0013

Preferences SUGM Coef.
Within: Less risk averse 0.0561 0.0010 0.1189 0.0015
Within: More risk averse 0.0299 0.0008 0.0713 0.0012
Between: More, less risk averse 0.0360 0.0008 0.0876 0.0013

Ratio of Coefs: Pref./Baseline
Within: Less risk averse 1.389 0.040 1.281 0.023
Within: More risk averse 0.740 0.026 0.768 0.017
Between: Less, more risk averse 0.891 0.028 0.944 0.019

Sample size for features of interest is 49536 dyads. Models are abridged, focusing on coefficients and ratios of in-
terest. For full results, Baseline SUGM coefficients are presented in Tables A12 and A13 and preference SUGM Co-
efficients are presented in Tables A14 and A15 Coefficient ratios are used to compare the two models, since higher
average degree (as is present the detected insurance groups will result in higher coefficient estimates. SEs for coef-
ficients are computed as shown in Appendix A.7.2 and SEs for ratios are computed as shown in Appendix A.7.3.

contribute to the estimate only if the node fixed effects for degree drop out within that tetrad,
thereby netting out heterogeneity in popularity. This allows for estimates of assortative matching
unconfounded by popularity. I estimate models for each village network which lead to three
insights. First, results unconditional on the sum of risk aversion from tetrad logit are similar
to those from comparable methods (i.e., logit) when conditioning on the sum of risk aversion.
Second, after accounting for popularity with tetrad logit, controlling for the sum of risk aversion
does not substantially change estimates. Third, assortative matching also attenuates in detected
insurance groups using this estimator. These results give me confidence that the sum of risk
aversion is controlling for a nuisance correlation between risk aversion and popularity. I describe
the tetrad logit estimator in greater detail and present results in Appendix A.6.3.

4.2 Subgraph Generation Models with Types

TheSUGM results for the coefficients of interest are presented in Table 4. While these are abridged
for clarity, full results of all SUGM models are available in Appendix A.7.4. Using the baseline
model, I estimate that individuals who are risk averse tend to form links with each other at a rate
of 4.04%. The network of co-membership in detected insurance groups tends to be denser than
the risk sharing network: I estimate that individuals who are surveyed about preferences tend to
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form links with each other at a rate of 9.28%, more than twice the rate in the risk sharing network.
Considering the coefficients of interest from the preferences model, I derive two main find-

ings. First, I see further evidence of assortative matching on risk preference by less risk averse
individuals. Less risk averse agents form within-type links at a rate of 5.61% (compared to the
base rate of 4.04%). Second, I do not see the same kind of assortative matching when looking at
more risk averse individuals: I estimate more risk averse individuals form within-type links at a
rate of 2.99%, lower than both the base rate and the rate at which less and more risk averse indi-
viduals form links between type (3.60%). In this way, less risk averse individuals drive assortative
matching. In contrast, more risk averse types are more likely to form between links than within
links.

The assortative matching in the detected insurance groups mirrors the pattern in the risk
sharing network (see Table 4). First, it is driven by less risk averse individuals who form within
links at a rate of 11.89%. Second, links between low and high risk aversion individuals form
at a higher rate (8.76%) than links within high risk individuals (7.13%). The degree of assortative
matching falls in the detected insurance groups vis a vis the risk sharing networkwhenwe correct
for the average number of links between individuals in the network. Results measuring the degree
of assortative matching as the ratio of the rate of between links to the rate of links between all
risk averse individuals are also presented in Table 4. The ratio of within types for less risk averse
individuals is higher in the risk sharing network, whereas the ratio of between types is lower.
Essentially, this indicates a reduced degree of assortative matching in detected insurance groups
relative to networks.

5 Welfare Implications of Assortative Matching

What are the welfare implications of assortative matching? In this section, I build a model that
considers a risk-neutral planner seeking to construct two risk pooling groups in a village in order
to maximize expected utility within risk averse members of the village. Based on this model, I
translate coefficients of assorative matching from the SUGMs into estimates of welfare.

To model covariate risk sharing in groups, I leave aside insurance group size and focus on
optimal group composition itself, which I define as the mix of types which make-up a group.
I consider group composition with regard to risk aversion, with relatively less and more risk
averse individuals.26 I set up this problem in two steps. First, I characterize how risk is pooled in
a group according to its composition. Second, using the solutions and value functions from the
first optimization problem, I write a planner’s problem maximizing aggregate expected utility of

26While, empirically, I also observe some risk loving individuals, I opt not to include them within the model. I
explain my reasoning for this choice in Appendix B.1.
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consumption in a village with groups, conditional on the composition of those groups.

5.1 Risk Sharing in Groups

I start from a baseline of perfect idiosyncratic risk sharing. In my model, this takes the form of
all idiosyncratic shocks being smoothed to zero (I will assume mean incomes are zero for the
purposes of this problem). However, the average of these shocks (which in general is not zero)
joins the covariate risk in the sharing problem. After this set of transfers takes place, a round
of risk shifting takes place. Less risk averse individuals may take on more of the covariate risk.
This covariate risk derives from both the average idiosyncratic shock—which in general is not
zero—and a perfectly correlated covariate shock.27 More risk averse agents are able to take on
less of the covariate risk, shifting them onto less risk averse individuals. However, less risk averse
individuals are still risk averse, so they require some compensation for the risk they take on. Thus,
recurring transfers are made to these individuals regardless of the covariate shock.

5.1.1 Setup

Suppose a group of fixed sizeN that sits within a village. Group member i has exponential utility
functions with coefficient of absolute risk aversion ηi:

ui(ci) =
1− e−ηici

ηi
.

Now, suppose there are low and high risk aversion households, where type is indexed by ℓ = 1, 2.
That is, η2 > η1 > 0. Nℓ is the number of individuals of type ℓ, and p = N1/N characterizes the
composition of the group in terms of these types. All households face a shock perfectly correlated
at the village level, ỹv and an idiosyncratic shock ỹi. Risk is symmetric between households and
between types: Household level shocks, ỹi ∼iid N(0, σ2) and village level shocks ỹv ∼iid N(0, ν2).
Income for agent i and type ℓ is computed yℓi = ỹi + ỹv. Taking account of the risk sharing
process, I write the consumption of household i of type ℓ as a weighted sum of the idiosyncratic
and covariate shocks in the group. For type ℓ = 1, 2,

N1c1i ≤ θ

(
N∑
i=1

ỹi +Nỹv

)
−N1λ1i and N2c2i ≤ θ

(
N∑
i=2

ỹi +Nỹv

)
−N2λ2i (7)

27This shock is perfectly correlated because I want to explore the role of assortative matching on risk preferences
in the presence of covariate risk, as opposed to heterogeneity in income correlation between individuals.
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which can be re-written,

c1i =

(
θ

p

)(
1

N

N∑
i=1

ỹi + ỹv

)
− λ1i and c2i =

(
1− θ

1− p

)(
1

N

N∑
i=1

ỹi + ỹv

)
− λ2i. (8)

Two assumptions are made in constructing this risk sharing function. First, the proportion θ ∈
[0, 1] of the covariate risk is borne by the less risk averse individuals in the group. When θ = 1,
all covariate risk is taken on by less risk averse individuals, when θ = p, covariate risk is shared
equally among all members of the group (i.e., only idiosyncratic risk is pooled) andwhen θ = 0, all
risk is taken on by more risk averse households. Second, there is a second, recurring transfer (of
fixed value) from themore risk averse to the less risk averse, which is embodied by the parameters
λ1i and λ2i. As we should expect, the total recurring transfers from type 2 must (weakly) exceed
the transfers out to type 1, though this constraint will bind in practice: −N1λ1i ≤ N2λ2i. With
these assumptions, Eq. 7 can be read that the total consumption of type 1 agents is less than or
equal to the share of the covariate shock they take on plus their total recurring transfers. Finally,
due to the exponential utility function and normal distribution of shocks, I represent expected
utility as a mean-variance decomposition (for details, see Appendix B.2):

E(Uℓ(cℓi)) = E(cℓi)−
ηℓi
2
V ar(cℓi).

5.1.2 Optimization Problem

The planner maximizes expected utility of less risk averse agents subject to several constraints.

max
λ1,λ2,θ

E(U1(c1i)) (9)

subject to E(U2(c2i|θ = p))) ≤ E(U2(c2i)) (10)

c1i =

(
θ

p

)(
1

N

N∑
i=1

ỹi + ỹv

)
− λ1i (11)

c2i =

(
1− θ

1− p

)(
1

N

N∑
i=1

ỹi + ỹv

)
− λ2i (12)

0 ≤ pλ1 + (1− p)λ2 (13)

Constraint (10) is an incentive compatibility constraint: more risk averse agents cannot be worse
off, ex ante than in the case where they only perfectly pool idiosyncratic risk.28 Constraints (11)
and (12) serve as individual budget constraints for each type, and finally, constraint (13) serves

28As I abstract away from commitment issues, this constraint is ex ante.
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to ensure the feasibility of the recurring transfers (for details, see Appendix B.3).

5.1.3 Solutions

How much covariate risk is shifted to the less risk averse agents? I solve the model, and present
this process in Appendix B.4. The proportion of covariate risk shared will depend on the risk
aversion and proportion of each type:

θ∗(p, η1, η2) =
pη2

(1− p)η1 + pη2
. (14)

Recall, if θ = 1, all covariate risk shifts to less risk averse individuals, and if θ = p, the baseline
of perfect idiosyncratic risk sharing is maintained. Since η2 > η1, θ∗(.) > p (for proof, see
Appendix B.5). This means some degree of covariate risk is shifted to less risk averse individuals.
Likewise, unless η1 = 0 (I assume it does not) or p = 1, some risk is still taken on by the more
risk averse. Furthermore, group composition matters for the degree of covariate risk sharing.

What are more risk averse agents willing to pay to shift risk away? Since λ∗
2 is paid into the

group pot, type 2’s willingness to pay depends on their own risk aversion, type 2’s risk aversion,
and group composition:

λ∗
2(p, η1, η2) = −η2

2

(
1− η21

((1− p)η1 + pη2)2

)
. (15)

where the expression in parentheses lies between 0 and 1. Because risk is symmetric in this
model (i.e., risk averse and risk loving types face the same covariate risk), the transfer does not
depend on covariate risk. Finally, type 1 will maximize their utility and hence the payments they
receive from type 2. I can write λ∗

1 by converting type 2’s willingness to pay into type 1’s average
payment:

λ∗
1(p, η1, η2) = −

(
1− p

p

)
λ∗
2(p). (16)

5.2 The Planner’s Problem

Therisk neutral planner seeks tomaximize aggregate expected utility of consumption, conditional
on the composition of groups. For ease of exposition, the planner allocates individuals to two
groups, g = A,B. I will update the notation from the first stage slightly. For a given group g, Ng

is the group size and NA +NB = N . Then Ngℓ is the number of individuals of type ℓ in group g

and pgℓ =
Ngℓ

Ng
.
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Figure 3: Optimal Allocation of Types Between Unequally Sized Groups

I state the planner’s problem as follows:

max
N1A

NA1V1(pA1) + NA2V2(pA1) + NB1V1(pB1) +NB1V2(pB1) (17)

subject to Nℓ = NAℓ +NBℓ, ℓ = 1, 2 (18)

Ng = Ng1 +Ng2, g = A,B (19)

To simplify this problem, I consider the simple case where there is an equal number of more and
less risk averse types. That is, N1 = N2. This implies that I can encompass the entire problem
just by looking at one choice parameter, p1A, and conditioning it on the size of the smaller group,
NA. pA1 = N1A

NA
, and I can express pA2 = 1 − pA1, pB1 = 2NB1

N
= 2(N1−NA1)

N
and pB2 = 1 − pB2.

Setting N1 = N2 reduces the set of constraints to three, and simple computations take account
of these three constraints:

max
NA1

NA1V1

(
NA1

NA

)
+NA2V2

(
NA1

NA

)
(20)

+NB1V1

(
2(N1 −NA1)

N

)
+NB1V2

(
2(N1 −NA1)

N

)
.

Solving this planner’s problem for an analytic solution is relatively difficult. However, it is easy
to characterize the optimal allocation of types numerically. In Figure 3, I plot the objective in
Problem 20 against pA1, the new choice variable. To construct this example, I use parameter val-
ues from the data. I set σ2

c = 292.882 (the square of the standard error of net losses in the data),
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(a) No Assortative Matching: optimal composi-
tion of insurance groups. β̃C

L,1,2 = 0.5 and pU =
0.5.

(b) Some assortative matching in a risk sharing
network. β̃C

L,1,2 = 0.3125 and pU = 0.8061.

(c) Some assortative matching: a suboptimal
composition of insurance groups. β̃C

L,1,2 = 0.375

and pU = 0.75.

(d) Complete Assortative Matching: a worst case
composition of insurance groups. β̃C

L,1,2 = 0 and
pU = 1.

Figure 4: Stylized scenarios. Yellow is more risk averse, teal is less risk averse.

N = 100, N1 = N2 = 50, and set η1 ≈ 0.0016, η2 ≈ 0.0037, the average coefficients of absolute
risk aversion in my data (see Section 2.2.3 for coefficients of risk aversion and types). Inspect-
ing Figure 3, welfare is maximized when pA1 = 0.5, i.e., when diversity of types is maximized.
Likewise, welfare is minimized as pA1 approaches 0 or 1, when diversity of types is minimized.
For a demonstration that this is not an artifact of equal numbers of type 1 and type 2 agents, see
Appendix B.6.

5.3 Simulating the Welfare Implications of Assortative Matching

What are the welfare implications of the degree of assortative matching? To quantify this effect, I
compare among four scenarios. I list these scenarios, which are visualized in Figure 4, from high
to low in terms of aggregate welfare:

(a) Optimal scenario: The planner’s optimum with equal numbers of types. This scenario fea-
tures no assortative matching.

(b) Detected insurance group scenario: takes the degree of assortative matching implied by
detected insurance group SUGM estimates. Features some assortative matching.

(c) Risk sharing network scenario: takes the degree of assortative matching implied by risk
sharing network SUGM estimates. This features slightly more assortative matching than in
the detected insurance group scenario.
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(d) Worst case scenario: complete assortative matching.

Using the results from our SUGMs I am able to construct implied membership of groups. In
the special case where all group members form a clique, I am able to directly estimate the ratio
of SUGM coefficients using only the number of each type in the group. This is useful because it
can give us an analytic expression of the average proportion of the majority type in each group
as a function of the SUGM coefficients. By construction, the majority type will be type 1 in about
half of the groups, and type 2 in the other half. Using simplifying assumptions (covered in detail
in Appendix C), I am able to express the average proportion of the majority type, pU (“p upper”):

pU = 0.5 + 0.5×

√√√√1−
(
N −G

N − 1

)(
β̃L,1,2

β̃ra

)
(21)

Once I obtain pU for a scenario, it becomes the basis for a simulation of groups.
To examine these counterfactual scenarios, I use a simulation approach. Each simulation

proceeds as follows: first, I sort detected insurance groups into two lists with equal total mem-
bership. If a group is assigned to the first list they will be majority type 1 and if they are assigned
to the second they will be majority type 2. Second, I randomly assign individuals to detected
insurance groups using a binomial process, varying the probability of assignment by scenario.
Specifically, the membership of group g isNg draws from a binomial distribution with p̄U proba-
bility of success—success being defined as a type 1 agent or a type 2 agent, depending on which
should be the majority type. Third, I compute the value functions for these random assignments
using the derived value functions. For details of the simulations, see Appendix C.

I simulate insurance group membership 50, 000 times, compute the value functions, and plot
the results in Figure 5. The results are as follows:

(a) With no assortative matching, the optimal scenario has type 1 and type 2 agents each cho-
sen at 0.5. The average loss is −$136.57 (PPP).

(b) The detected insurance group scenario has some assortative matching, as R1,2 = 0.944. I
compute pU = 0.754. The average loss due to risk is −$141.37 (PPP).

(c) The risk sharing network scenario has slightly more assortative matching, asR1,2 = 0.891.
I compute pU = 0.774. The average loss due to risk is −$142.13 (PPP) in this scenario.

(d) Finally, in the worst case scenario, there is complete assortative matching, so groups chosen
as type 1 majority are completely type 1 and groups chosen as type 2 are completely type
2. The average loss due to risk is −$156.43 (PPP).
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Table 5: Differences in Average Losses from Risk per Capita.

…less Scenario
Scenario… (b) Group (c) Network (d) Worst Case
(a) Optimal 4.79 5.56 19.86

(b) Group 0.77 15.06

(c) Network 14.29
Results are averages from 50,000 simulation draws. Each entry in the table is
the average per capita welfare from the scenario in the column less the average
per capita welfare in the scenario in the row. Differences are in PPP Dollars.

The average differences in scenarios are presented in Table 5. Due to relatively similar degrees
of assortative matching in the network and the group scenario as estimated by the SUGM, I see
relatively similar degrees of welfare. However, given larger differences in the degree of assortative
matching, there could be potentially be large reductions in welfare. These are bounded, holding
community size and risk aversion constant, by the worst case scenario. These results are also
influenced by the size of the measured coefficients of risk aversion, for which the upper bound
binds for a number of respondents. Appendix B.7 discusses the impact of varying measured risk
aversion on the welfare impact of assortative matching in theory.

6 Conclusion

In this paper, I explore assortative matching on risk preferences as a barrier to covariate risk
sharing. Using data on risk sharing, I estimate that individuals tend to match with those people
who have similar degree of risk aversion. When looking at detected insurance groups, I see
a reduction in this assortative matching. Taking seriously a theoretical model of covariate risk
sharing, I simulate welfare outcomes and find that the magnitude of assortative matching is small
from the perspective of ex ante economic welfare. While I find large reductions in ex ante welfare
due to covariate risk, the losses due to assortative matching are small when compared to the
losses due to the relatively small size of risk pooling groups.

How canwe square the empirical results on assortativematchingwith the theory above? Does
the failure to achieve no assortative matching suggest that individuals are failing to maximize
utility? I would not go so far. In particular, themodel presented here abstracts away from issues of
asymmetric information that tend to plague idiosyncratic risk sharing. Models where agents can
take risky actions might provide an incentive for this type of assortative matching. Indeed, this
logic is reflected in theoretical models where asymmetric information over risky actions drives
assortative matching when there is heterogeneity in preferences (Attanasio et al., 2012; Wang,
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Figure 5: Histogram plots of welfare losses due to risk from 50,000 simulations. Scenario means
are denoted by vertical black lines.

2015). Similarly, where risk endowments differ, these serve as a driver of assortative matching
(Jaramillo et al., 2015; Gao and Moon, 2016). Finally, where shocks are autocorrelated, we may
find assortative matching on this dimension (Xing, 2020). This suggests that future avenues may
need to balance the apparent substitution between idiosyncratic and covariate risk sharing.

Beyond exploring substitution between forms of risk sharing, the results here may also reflect
a multiplexity trap, where risk sharing networks are influenced by other, seemingly unrelated
networks (Cheng et al., 2021). For example, risk sharing networks might formed in dyads among
co-workers. Such a story would lead to similarly preferenced individuals joining the same risk
pools as we seen in our empirical exercise. In such a setting, while endogenous choice is exercised
in forming relationships, this choice is both path dependent and may lead to lower utility than if
each network were formed independently.

A final point, and one avenue for future exploration arises from a problem of the empirical
setting: less risk averse agents tend to be more popular in risk sharing networks than their more
risk averse peers. While this issue has not been rigorously modeled, intuition might suggest the
opposite.29 For example, if we consider risk sharing as a coping strategy for those excluded from

29Some related work has been done. For example, the theoretical model in Jaramillo et al. (2015), which focuses
on heterogeneity in risky endowments, relates demand to network structure. They find that those who face the least
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formal risk management tools, we would expect (and possibly hope) that those who are more risk
averse would demand more insurance and thus find themselves more deeply embedded in these
risk sharing networks. To the contrary, more risk averse agents tend to find themselves distant
from the center of networks, with fewer connections. This feature of network formation yields a
puzzle and a problem for future research.

risk will be accepted by any risk sharing group.
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A Empirical Appendix

A.1 Details of Network Elicitation

The network elicitation is based on the set of names of everyone else in the sample, which were
pre-printed on the enumeration form. For each pre-printed name, respondents are asked if they
know who this person is and if they know them personally. If they answer to either of these
questions is “no,” the enumerator moves on to the next name. If they answer “yes” to both,
they are asked how the person is related to them, how long they’ve known them, if they consider
them a friend, frequency of communication, if they would trust the person to look after a valuable
item for them, and if they’ve received or given gifts. Two of these questions appear most useful
in measuring risk sharing networks. First, gift networks may serve as useful networks as they
involve the transfer of cash, in kind goods, or services, such transfers being an integral part of
risk sharing. The questions posed to the respondents are: “Have you ever received a gift (of
money, goods, or services) from this person?” and “Have you ever given a gift (of money, goods,
or services) to this person?” Second, as risk sharing trust networks often provide assistance as
credit, trust networks may provide useful in measurement. The survey asks “Would you trust this
person to look after a valuable item for you?”

Respondents tend to report reciprocal gift giving. Respondent i who reports giving a gift to
j also tends to report receiving a gift from j. Yet, answers often differ between those asked. For
example, i reports giving gifts to person j, but j does not report receiving. While people tend to
forget the gifts they’ve receivedmore readily than those they give (true here as it is elsewhere, e.g.,
Comola and Fafchamps, 2014), this does not account for the majority of the reduction. Instead,
they report receiving gifts from others, who did not claim to give. Likewise, in the trust network,
we find that often trust is not reciprocated. This puzzle might be explained by the elicitation
method. In particular, a prerequisite to both the gift and trust questions is the question “Do you
know them personally?” If i regards j as a personal connection they are asked about j and may
report gift giving. However, if j does not regard i as a personal connection, then they will not be
queried about gift giving.

Comola and Fafchamps (2014) outlines a procedure to determine how to construct networks
when there is such discordance. While I do not currently implement their procedure, it is possible
to do so with this data, and this could represent an expansion of the analysis. However, I present
it here as their approach empirically differentiates between three stories of link formation, which
are useful mental models in constructing this network: First, desire to link, where reported links
in the survey elicitation represent possible links that might be made if the need for help arises.
Second, bilateral link formation, where both must agree to form a link (i.e., links are pairwise
stable a la Jackson and Wolinsky, 1996). Third, unilateral link formation, where the action of one
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party is sufficient to form a link. For unilateral and bilateral link formation, discordant answers
may occur due to misreporting (perhaps forgetting to report a connection).

When considering our network, it is important to note that misreporting is less likely than in
other network surveys because the network elicitation differs considerably from other work. For
example, in the Nyakatoke data (used in Comola and Fafchamps, 2014, 2017), asks the question
“Can you give a list of people from inside or outside of Nyakatoke, who you can personally rely
on for help and/or that can rely on you for help in cash, kind or labour?” Comola and Fafchamps
(2014) finds that these measure desire to link risk sharing networks. In contrast, and as discussed
above, respondents in this survey are queried about all others in the sample as opposed to asked
to produce a list, suggesting misreporting to be a considerably smaller concern. This means that
we can more readily think of discordant links as differences of opinion between respondents (as
opposed to misreporting). Additionally, as one of our questions ask about gifts given in the past,
as opposed to potential future risk sharing transfers. This reduces the likelihood of finding desire
to link networks as opposed to hypothetical questions.

A.2 Construction of Networks

A.2.1 Gift and Trust Networks

I start by constructing i’s gift and trust networks, constructing a bilateral gifts network and a
bilateral trust network. In the bilateral gifts network a link occurs between i and j if i reports
reciprocal giving (i received and gave to j), and vice versa. In the bilateral trust network, a link
occurs if i reports trusting j and j reports trusting i. Then using the gifts and trust networks, I
construct a possible risk sharing network, where i and j are linked in the risk sharing network if
they are in both the gifts and the trust network.

A.2.2 Insurance Organizations Network

I also have access to data about organizational membership in the village. These include a short
description of type of organization and the organization name. I form a co-membership network
which draws on organizations related to mutual insurance. In particular, while funeral groups
are easy to observe, I comb through the data to find other insurance related organizations. I
select those organizations defined by any member as “assistance,” “support,” or “welfare” (e.g.,
“support group” or “welfare organisation”) as mutual insurance organizations. In order to reduce
measurement error, I first clean group names and types. For names, I harmonize group names
with small differences (e.g., “kuw” vs. “kuo,” both meaning group). Second, I clean group types
to remove health, advice, trade unions, and religious groups that fall under funeral or mutual
insurance labels.
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Table A1: Comparison of risk sharing networks using trust, gifts, and insurance group member-
ship.

Gifts Trust Risk Sharing Insurance Orgs Combined
Panel A: Network Densities

Density 0.0614 0.0476 0.0329 0.0137 0.0457

Panel B: Correlations
Gifts 0.587 0.721 0.015 0.609

Trust 0.825 0.026 0.701

Risk Sharing 0.018 0.842

Insurance Orgs 0.538

Gifts is an indicator for if i and j report giving and receiving gifts (i.e., equal to one if true, zero otherwise). Trust
is an indicator for if both i and j would trust the other to look after a valuable item. Risk sharing is the interaction
of trust and gift. Insurance orgs is an indicator for if respondents were co-members in a funeral insurance, support,
assistance, or welfare group. Finally, combined is an indicator for if there is a link in either the risk sharing or the in-
surance orgs network. Panel A presents network density. Panel B presents spearman correlations between networks.

I construct a co-membership network based on group names. Additionally, some reported
memberships may have lapsed, as many report being in a group, but not having attended any
meetings in the past year. If respondents are not attending meetings this makes these groups an
unlikely place for informal transactions to take place. In this network a link is formed whenever
i and j are current members group together (defined as having attended in the past year). I then
restrict this network to only co-memberships in insurance organizations. To do so, again if one
of the members must describe it this way.30 I refer to this network as the insurance organizations
network.

A.2.3 Family Network

For the family network, I use the relationship codes collected to identify close family. In this
definition, family includes spouses, children, step-children, parents, grandparents, and grand-
children. These relationships are lineal marriage related ties as well as collateral ties such as
siblings.

30This is to correct for the fact that many lines in the organization membership data do not feature descriptions,
despite the same organization being described elsewhere. This is takes place after a round of cleaning of group types,
to avoid groups that are spuriously identified under these labels (e.g., “herbalist society” as a welfare group).
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A.2.4 Risk Sharing Network

There is no-one-size-fits-all approach to network construction. Constructing a network depends
on what role the network plays and how the network is elicited, among other considerations. I
construct a two risk sharing networks. First, I use the bilateral gift and trust network, which I
will use in the main text. Given past documentation of the importance of reciprocal relationships
in risk sharing (e.g., Fafchamps, 2003; Blumenstock et al., 2016), I prefer bilateral networks to
unilateral networks. Furthermore, due to the exhaustive elicitation method, there is no reason to
suspect under reporting of links and the networks generated by this approach are not particularly
sparse. In fact, unilateral links may suggest desired links that may or may not provide support in
a time of need.

Second, for robustness, I construct a second combined risk sharing network using the insur-
ance organization network and the first risk sharing network (i.e., bilateral trust and gift network):
i and j are linked in the risk sharing network if a link is present in either the gift and trust network
or the organization network. These two networks represent different spheres of risk sharing, and
are not strongly correlated (Pearson correlation, r = 0.018). In some sense, the organization
network speaks for itself as groups are labeled for some kind of risk sharing. However, many
village members belong to no organizations and would therefore appear to have no risk sharing
connections if we used only the organizations network. Additionally, as we will see below, these
organizations do not do well in predicting informal transfers.

As I am considering the formation of risk sharing networks, I opt not to include upstream
relationships, i.e., those which might lead to formation of risk sharing networks. These include
relationships like family ties, geography, and ethnicity (e.g., Fafchamps and Gubert, 2007). I in-
stead reserve these for later analysis/controls.

A.3 Validation of Risk Sharing Networks

One approach to validate my choices in risk sharing networks is important to document that
current transfers align not only with the network in question, but that these transfers are made
in response to shocks. I estimate a directed dyadic regression, which takes the the form

τij = α + β aij + γỹi + δ aij × ỹi + εij (22)

where τij is a transfer (a loan or gift) from i to j, aij is the network of interest, ỹi is the idiosyncratic
income shock to i. If aij is an informal risk sharing network, I expect that δ > 0, or that those
with positive shocks relative to others give loans and gifts within the network. I take this as
evidence that these networks are representative of risk sharing networks. Additionally, I expect
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that β > 0, i.e., transfers happen more often within these networks in general, and γ > 0, those
with positive shocks relative to others tend to give gifts or lend money.

Table A2: Validating risk sharing networks with current transfers and lottery winnings

Any transfer from i to j

(1) (2) (3) (4) (5)
Trust 0.0118∗∗∗

(0.00262)
Trust × i won lotto 0.00723

(0.00456)

Gifts 0.0121∗∗∗
(0.00228)

Gifts × i won lotto 0.00577
(0.00382)

Risk Sharing 0.0171∗∗∗
(0.00394)

Risk Sharing × i won lotto 0.0108
(0.00669)

Insurance Orgs 0.00427
(0.00314)

Insurance Orgs × i won lotto -0.000761
(0.00397)

Combined 0.0131∗∗∗
(0.00292)

Combined × i won lotto 0.00460
(0.00469)

i won lotto 0.000760∗ 0.000710∗ 0.000733∗ 0.00112∗∗ 0.000771∗
(0.000311) (0.000295) (0.000306) (0.000369) (0.000310)

Constant 0.00105∗∗∗ 0.000884∗∗∗ 0.00105∗∗∗ 0.00154∗∗∗ 0.00105∗∗∗
(0.000162) (0.000137) (0.000161) (0.000177) (0.000156)

N 99704 99704 99704 99704 99704

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Dyadic robust standard errors in paratheses (Fafchamps and Gubert, 2007). The
outcome is an indicator for if any transfer, i.e., a loan or a gift, was made from i to j during the study period. i won
lottery is an indicator for if respondent i won a lottery during the study period. Gifts is an indicator for if i and j re-
port giving and receiving gifts (i.e., equal to one if true, zero otherwise). Trust is an indicator for if both i and j would
trust the other to look after a valuable item. Risk sharing is the interaction of trust and gifts. Insurance orgs is an
indicator for if respondents were co-members in a funeral insurance, support, assistance, or welfare group. Finally,
combined is an indicator for if there is a link in either the risk sharing or the insurance orgs network.
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To operationalize these variables I use records of gifts and loanswithin villages within the data
as my measure of transfers and lotteries performed by researchers as random shocks. I restrict
loans and gifts to those given between identified villagers. For loans, I restrict to those given for
consumption or emergency uses. These include loans for consumption, medical bills, funerals or
other ceremonies, and school fees, as well as miscellaneous labelled uses (one loan for a court
case and one for an electricity bill). I restrict gifts as well, removing gifts for holidays (Christmas,
New Years, Valentines, Birthdays), bartering, and remittances. Both loans and gifts include both
cash and in kind transfers. Lottery and prize winnings are collected in the shocks module of the
survey (these are labeled “lottery”, “lotto”, “prize winnings”, “Lottery or prize winnings”). These
lotteries were administered via drawings of bottle caps. Prizes varied between 10 cedis and 70
cedis. Some were given in cash and others in kind (livestock vouchers). With this data, τij is
replaced with an indicator equal to one if i gave a gift or a loan to j and zero otherwise, and ỹi is
an indicator variable equal to one if i won any lottery and zero otherwise.

Table A2 presents the results of this dyadic regression. While limited somewhat by the data
used for this exercise, the results are consistent with a social network that is used for risk sharing.
I find that the risk sharing network (i.e., using bilateral gifts and trust) explains transfers from
those who have received lottery winnings to those in their networks. First, across networks we
tested, we see that those who received prize winnings are more likely to transfer money to others.
Second, across most of the networks, network connections increase the probability of transfers.
This is particularly pronounced in the chosen risk sharing network, where the probability of a
transfer increases 1.7 percentage points. Those who won the lottery were 1.1 percentage points
more likely to give a gift or grant a loan to those in their network (Table A2, column 3), though I
cannot reject the null hypothesis at standard significance levels when using dyadic robust stan-
dard errors. Nevertheless, the marginal increase probability of giving a transfer to someone in
the risk sharing network member is over ten times the marginal effect on giving to a random
village member. More to the point, this network had the strongest risk sharing response among
the networks tested.

The large standard errors on this estimate are likely due to two reasons, First, the fact that the
network of gifts and loans in this period are from recall, and therefore, consequently, the network
is relatively sparse (in particular, about 0.2% of directed dyads feature a transfer) (Comola and
Fafchamps, 2017). Similarly, many did not receive lottery winnings, and only 1.1% of directed risk
sharing network ties feature i as a lottery winner. Therefore when accounting for correlations
between ties, if there is correlation in people’s decisions to make transfers, this will be reflected
in the higher standard errors.31

31Indeed, when running the same regression with heteroskedasticity robust standard errors, I find that this esti-
mate is significant at the 10% level
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Taken together, this suggests that the risk sharing network I have identified is capturing risk
sharing behavior as well as any we could construct, and as opposed to more prosaic favor ex-
change. Notably, and in contrast, the insurance organization network is not as strong a predictor
of transfers, and its addition to the risk sharing network (in combined) reduces the size of the av-
erage risk sharing transfers considerably. While the organizational transfers within these groups
may simply be imperfectly captured here, it nevertheless indicates that this network not be the
most relevant for this study. Nevertheless, we will perform robustness checks using it.

A.4 Community Detection

A.4.1 Walktrap Algorithm

At a high level, the Walktrap algorithm proceeds as follows (Pons and Latapy, 2005):

1. To start, each node is assigned to its own community. Compute distances for all adjacent
communities. See Appendix A.4.2 for a description of the computation of distances.

2. Merge the two adjacent communities with the smallest distance into one community.

3. Recompute the distances between communities.

4. Repeat steps 2 and 3 until all communities have been merged into one, recording the order
of merges in a dendrogram (a hierarchical diagram documenting community merges).

5. Using the dendrogram, compare the modularity of all possible community assignments and
choose the one with the highest modularity. See Appendix A.4.3. for the computation of
modularity.

A.4.2 Computing Distances using RandomWalks

TheWalktrap algorithm uses random walks to compute node similarity (Pons and Latapy, 2005).
A random walk proceeds as follows: A random walker starts at node i and moves to an adjacent
node with probability 1/di (where di is the degree of i). This process is repeated from the landing
node, k, moving to an adjacent node with probability 1/dk, a total number of s times. If nodes
are in the same community, random walks of length s from nodes i and j should often land on
the same nodes. Of course, nodes with higher degree will more often receive these walks, so the
measure of distance takes account of the degree of receivers.

rij(s) =

√√√√ n∑
k=1

(P s
ik − P s

jk)
2

dk
. (23)
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where P s
ik is the probability that a walk starting at node i ends its walk on node k. The distance

overall can be thought of as the L2 distance between P s
ik and P s

jk.
Building on this definition, the authors also define the distance between communities:

rC1,C2(s) =

√√√√ n∑
k=1

(P s
C1,k

− P s
C2,k

)2

dk
. (24)

where the source of the random walk is drawn randomly and uniformly from members of that
community: P s

C,k =
1
|C|
∑

i∈C P s
ik.

A.4.3 Modularity

Modularity measures the internal quality of the community by looking at how many links exist
within the community compared to how many would be expected at random (Newman, 2012).
The measure follows from a thought experiment: suppose you were to take a graph and ran-
domly “rewire” it. This rewiring preserves the degree of individual nodes, while destroying the
community structure. The average number of within community links from rewiring is used as a
counterfactual. Having many more links within the community than the counterfactual implies
a good community detection. Fewer implies a poor community structure.

To compute modularity, let di and dj be the degrees of nodes i and j respectively. Letm be the
number of edges in the graph. The expected number of edges between i and j from this rewiring
is equal to didj/(2m− 1) ≈ didj/2m. 2m since each link has two “stubs,” so to speak. I can then
compare this expected number of links between i and j to the actual connections: letting Aij be
the ijth entry of the matrix, I take the difference these two numbersAij− didj

2m
. I can interpret this

as connections over expected connections in a random graph conditional on node pair degrees.
Then, these values are weighted by if they reside in the same community, i.e., if cij = 1. Finally,
I aggregate to the graph level and normalize by twice the number of links present:

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
cij

This serves as an easily computable and straightforward measure of the internal quality of com-
munities.

A.4.4 Edge Betweenness Community Detection

A different approach to detecting communities come from Girvan and Newman (2004). This algo-
rithm utilizes edge betweenness—the edge counts of shortest paths through the network. To do so,
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find the shortest path in the network between each pair of nodes, the count the number of paths
that pass through each edge, awarding partial credit if there are multiple shortest paths between
nodes. The intuition of this method is that these serve to constrain the flow of information and
transfers themselves. This makes monitoring or learning about others difficult.

The algorithm proceeds as follows:

1. Compute edge betweenness for all edges

2. Find the edge with the highest betweenness, and remove it from the network

3. Recalculate betweenness for all edges that remain

4. Repeat until all edges have been removed

This leaves us with a set of potential community assignments based on network components
(connected subgraphs). Every time the network is split into multiple components, this is a poten-
tial community assignment. As in the Walktrap algorithm, these are compared using modularity,
and the assignment with the highest modularity is selected.

A.4.5 Community Detection Results

Walktrap community detection results are presented in Figure A1, with adjustments to visualiza-
tion to help the reader see community structure. Visual inspection of the community detection
yields a number of interesting points. First, within the giant component (the largest connected
portion of the network) we tend to see large central communities, medium-sized offshoots, and
small marginal communities. Second, outside of this giant component, communities coincide
with the small components. This pattern parallels the social visibility findings of Vanderpuye-
Orgle and Barrett (2009).

The community assignments produced by Edge Betweenness are similar to those fromWalk-
trap. Community co-membership between the two methods has a relatively strong correlation,
around 0.6 (see Table A3). In contrast, the detected communities are less closely related to the
original risk sharing network, with correlations around 0.4. The communities are more dense
than the risk sharing network, and are composed a bit differently. The detected insurance groups
discard about one third of the ties in the risk sharing network and fill in a large number more,
more than doubling the number of ties (see Table A4). As is suggested by the correlation, the ties
kept from the network and the ties added are similar between methods.

Drawing on the literature, the differences in the risk sharing network and the detected in-
surance groups are not arbitrary. If edges tend to cross communities this is indicative that these
edges are less likely to be activated for the purposes of risk sharing (Putman, 2020). Conversely,
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Table A3: Correlations Between Community Detection Methods

Edge Betweenness Walktrap
Risk Sharing 0.418 0.394
Edge Betweenness 0.590

those nodes that that are not adjacent in the original risk sharing network but are part of the
same community are more likely than other similar nodes (e.g., at the same network distance)
to be incorporated into informal insurance. This is either due to flows over networks (similar to
results in De Weerdt and Dercon, 2006) or matching with new risk sharing partners (Putman,
2020). I interpret these detected insurance groups as the furthest extent of risk sharing in these
networks.

Table A4: Comparison of Detected Insurance Groups to Risk Sharing Network

Number of Edges in…
Method Density Diff. Both Only RSN Only Detected Neither
Walktrap 0.0788 -0.0459∗∗∗ 2106 1110 5600 88956

Edge Betweenness 0.0746 -0.0417∗∗∗ 2156 1060 5134 89422
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Diff. is the risk sharing network density (0.0329) less the detected insurance
group co-membership network. ‘Both’ indicates the edge exists in both networks, ‘Only RSN’ are those edges
that appear in the risk sharing network but not the detected insurance group co-membership network, ‘Only
Detected’ is the opposite of Only RSN, and ‘Neither’ indicates the edge exists in neither network.
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(a) Darmang (b) Pokrom

(c) Oboadaka (d) Konkonuru

Figure A1: Risk sharing networks in villages with walktrap community detection assignment
overlaid. Nodes are individuals and edges are links in the risk sharing network. Detected com-
munities are represented by shaded regions and node colors.
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A.5 Risk Preferences

A.5.1 Hypothetical Gambles

Amounts for each hypothetical gamble are presented in Table A5. The choice between gambles
is framed around choice to purchase agricultural inputs. In the gains domain, the gambles are
framed around fertilizer and in the losses domain, they are framed around insecticide. While the
gambles themselves are not normally distributed, yB − E(yB) is both distributed symmetrically
around zero and relatively small compared to incomes.

Table A5: Hypothetical GambleQuestionnaires

First Questionnaire
Prob. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

yA 100% 85 90 95 100 105 110 115 120 125 130 135

yB
50% 20 20 20 20 20 20 20 20 20 20 20
50% 200 200 200 200 200 200 200 200 200 200 200

SecondQuestionnaire
Prob. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

yA 100% 80 80 80 80 80 80 80 80 80

yB
50% 40 40 40 40 40 40 40 40 40
50% 110 115 120 125 130 135 140 145 150

Each set of questions was asked in the domain of gains and the domain of losses, for a total of four sets of
questions. Amounts are in Ghanaian Cedis (about 0.54 GHC/$PPP, so 200 GHC would be around $370 PPP in
2009). The script proceeded from midpoint gamble (Q6 in the first questionnaire and Q5 in the second) to the
direction implied. For example, choosing A in Questionnaire 1 Q6 would direct you to Q5, which lowers the
sure value of A. The elicitation ends on the question where the respondent switches from their choice.

A.5.2 Exponential Preferences with Normally Distributed Shocks

For each gamble, let YA be constant and let YB be normally distributed. For an agent with CARA
preferences, I represent expected utility as a mean variance utility function (Sargent, 1987).

EUi(Y ) = E(Y )− ηi
2
V (Y ) (25)

Respondents are able to choose between two gambles yA and yB , and will be indifferent between
the two when

E(yB)−
ηi
2
V (yB) = yA.
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If an individual reaches a point of indifference between two gambles, I assign them to themidpoint
between the two gambles. Hence, if the mean differs, I take the average of the mean of the
two gambles and assign this value to the point of indifference. If the variance differs, I take the
average of variances and assign this value to the point of indifference. The second two menus are
reflections of the first two onto the domain of losses. Then we can express risk aversion for agent
i as a function of their indifference point,

ηi =
2(E(yB)− yA)

V (yB)

and recover the coefficient of absolute risk aversion.

A.5.3 Alternative Approaches to Risk Preferences

While it is useful to compute risk preferences as outlined above, the assumption of asymptotic
normality may not be defensible in every case. To check the robustness of results to this assump-
tion, I compute CARA coefficients while adjusting two assumptions.

First, to compute coefficients of risk aversion without making the assumption of normally
distributed shocks, we must draw directly on the exponential utility function. At the point of
indifference, the utility of the two gambles should be equal:

1− e−ηiyA

ηi
= 0.5

(
1− e−ηiy

L
B

ηi

)
+ 0.5

(
1− e−ηiy

H
B

ηi

)
(26)

where yLB is the low payout and yHB is the higher payout of choice B. If ηi ̸= 0, this reduces to
the following equality:

2e−ηiyA − e−ηiy
L
B − e−ηyHB = 0 (27)

Using this equality, I use a numerical solver to compute ηi at this indifference points implied by
the questions. If an individual reaches a point of indifference between two gambles, I assign them
to the midpoint between the two gambles. Hence, I take the average of the coefficients implied
by the two questions. Figure A3(a) compares the method to this alternative method, and finds
that while coefficients of risk aversion are almost perfectly co-linear, those used in the paper are
smaller than those that would be computed without the normality assumption, implying lower
degrees of risk aversion or risk loving.
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Figure A2: Histogram and distribution of risk preferences within the four villages. The histogram
fill, which depicts themeasured degree of risk aversion from the hypothetical gambles, is matched
with Figures 2, A4, A5, and A6. Vertical lines indicate distinctions between types, which are
annotated on the x-axis.
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Figure A3: Comparison of CARA Coefficients by Underlying Assumptions
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However, the computation has a second assumption embedded in it. As opposed to averaging
the mean and variance of income before computing the coefficient, it averages the coefficients
after computing them at the mean and variance of the gambles. This difference, while subtle,
actually accounts for the majority of the difference in the estimates of risk aversion. The second
two subfigures in Figure A3 decompose these two assumptions. Figure A3(b) shows the results
of changing the computation method (computing preferences first and then averaging), while
Figure A3(c) shows the result of changing the distributional assumption, holding computation
constant. This shows that in this case the assumption of asymptotic normality should be treated
as relatively benign.

Most 
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Risk Neutral

Split

Most 
Risk Averse

Figure A4: Darmang Risk Sharing Networks with Risk Preferences Indicated by Color
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Figure A5: Oboadaka Risk Sharing Networks with Risk Preferences Indicated by Color
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Figure A6: Konkonuru Risk Sharing Networks with Risk Preferences Indicated by Color

51



A.6 Robustness Checks

A.6.1 Selection-on-Observables Results: Addressing Popularity and Homophily

Assortative matching on risk preferences could reflect assortative matching on some other social
or economic dimension. In addition to the inclusion of kinship and risk aversion, my approach
for controlling for other observables related to popularity and homophily will be straightforward.
Homophily is a common feature of social networks and is similarly present in the context of risk
pooling (?Fafchamps and Gubert, 2007; Jaramillo et al., 2015).

Table A6 presents results from the selection-on-observables approach. I control for if the
pair is married, are co-wives, have the same occupation, are the same gender, are (additionally)
both men, have the same level of schooling, are both primary, secondary, or tertiary educated
(no/missing education left out), and for sums and absolute differences in: age, and family net-
work degree centrality. Additionally, all regressions feature village fixed effects. In general, the
magnitude of β1 falls when controls are included. For example, in Column (2), the estimate of β1

fall slightly to −0.00425 and is no longer statistically significant. However, in column (5), sta-
tistical significance returns (at the 5% level) with just a marginally higher estimate. Discounting
changes in statistical significance, the magnitudes of the effects when controlling for this battery
of related factors is very consistent, suggesting a real—if subtle—relationship.

Table A7 presents results from the selection-on-observables approach for detected insurance
groups. I control for if the pair is married, are co-wives, have the same occupation, are (addition-
ally) bothmen, have the same level of schooling, are both primary, secondary, or tertiary educated
(no/missing education left out), and for sums and absolute differences in: age, and family network
degree centrality. as above, all regressions feature village fixed effects. One small difference in the
controls included is made for practical reasons. In an idiosyncrasy, all detected insurance group
specifications including same gender as a control variable result in highly singular variance ma-
trices when estimating dyadic robust standard errors. As it is clear these errors matter for this
application, I opt to remove this variable from the control function to ensure robust inference.
Here have similar effect sizes to the main specification, and noisy standard errors.

A.6.2 Logistic Regression Results

I estimate assortative matching using a dyadic linear probability model because this allows me
to utilize village fixed effects in my specifications. However, logistic regression is typically con-
sidered a more appropriate approach for binary dependent variables, including in network for-
mation models, as when predictions are outside of the unit interval, coefficient estimates could
suffer from inconsistency (Horrace and Oaxaca, 2006). Therefore, to ensure my choice of speci-
fication does not influence the estimates of assortative matching, I replicate Tables 2 and 3 here

52



Table A6: Dyadic Regression: Risk Sharing Network with Controls

(1) (2) (3) (4) (5)
|ηi − ηj| -0.00235 -0.00425 -0.00250 -0.00437 -0.00430∗

(0.00188) (0.00236) (0.00184) (0.00229) (0.00208)

ηi + ηj -0.00214 -0.00211 -0.00211
(0.00177) (0.00175) (0.00174)

Familyij 0.194∗∗∗ 0.194∗∗∗ 0.195∗∗∗
(0.0149) (0.0149) (0.0191)

Familyij × |ηi − ηj| -0.00105
(0.0106)

Village FE Yes Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes Yes
N 65102 65102 65102 65102 65102
R2

Dyadic robust standard errors are reported in parentheses (Fafchamps and Gubert, 2007). All specifications are
dyadic linear probability models with matching in the risk sharing network as the dependent variable. ηi is risk
aversion of individual i, so |ηi − ηj | is the absolute difference of risk aversion while ηi + ηj is the sum. Both
absolute differences and sums of risk aversion are transformed into z-scores. Controls include married, are co-
wives, have the same occupation, are the same gender, are both men, have the same level of schooling, are both
primary, secondary, or tertiary educated (no/missing education left out), and for sums and absolute differences
in: age and family network degree centrality. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A7: Dyadic Regression: Detected Insurance Group with Controls

(1) (2) (3) (4) (5)
|ηi − ηj| -0.00327 -0.00622 -0.00338 -0.00632 -0.00703

(0.00456) (0.00547) (0.00453) (0.00544) (0.00541)

ηi + ηj -0.00333 -0.00332 -0.00333
(0.00426) (0.00425) (0.00426)

Familyij 0.155∗∗∗ 0.155∗∗∗ 0.145∗∗∗
(0.0190) (0.0190) (0.0252)

Familyij × |ηi − ηj| 0.0110
(0.0162)

Village FE Yes Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes Yes
N 65102 65102 65102 65102 65102
R2

Dyadic robust standard errors are reported in parentheses (Fafchamps and Gubert, 2007). All specifications are
dyadic linear probability models with matching in the risk sharing network as the dependent variable. ηi is risk
aversion of individual i, so |ηi−ηj | is the absolute difference of risk aversion while ηi+ηj is the sum. Both abso-
lute differences and sums of risk aversion are transformed into z-scores. Controls include married, are co-wives,
have the same occupation, are both men, have the same level of schooling, are both primary, secondary, or ter-
tiary educated (no/missing education left out), and for sums and absolute differences in: age, (family network)
degree centrality, betweenness centrality, and eigenvector centrality. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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using logistic regression. The results of logistic dyadic regression are estimated for the risk shar-
ing network in Table A8 and the detected insurance groups in A9. These replicate the pattern
of results from the dyadic regressions in the main text. For the risk sharing network, we docu-
ment stronger assortative matching when using the sum of risk aversion to control for popularity.
Results based on heterogeneity around family also replicate. Assortative matching on risk pref-
erence in the detected insurance groups replicates its pattern of (non-)significance even when the
sum of risk aversion is controlled for.

Table A8: Dyadic Logistic Regression: Risk Sharing Network

(1) (2) (3) (4) (5)
|ηi − ηj| -0.141∗ -0.167∗ -0.113 -0.161∗ -0.206∗

(0.0707) (0.0744) (0.0638) (0.0687) (0.0927)

ηi + ηj -0.0302 -0.0567 -0.0567
(0.0466) (0.0489) (0.0487)

Familyij 3.030∗∗∗ 3.034∗∗∗ 2.939∗∗∗
(0.118) (0.118) (0.158)

Familyij × |ηi − ηj| 0.103
(0.0940)

Village Dummies Yes Yes Yes Yes Yes
Other Controls No No No No No
N 71052 71052 71052 71052 71052
Dyadic robust standard errors are reported in parentheses (Fafchamps and Gubert, 2007). All specifica-
tions are dyadic linear probability models with matching in the risk sharing network as the dependent
variable. ηi is risk aversion of individual i, so |ηi − ηj | is the absolute difference of risk aversion while
ηi + ηj is the sum. Both absolute differences and sums of risk aversion are transformed into z-scores.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A9: Dyadic Logistic Regression: Detected Insurance Groups

(1) (2) (3) (4) (5)
|ηi − ηj| -0.0942 -0.0907 -0.0797 -0.0838 -0.105

(0.0701) (0.0743) (0.0681) (0.0733) (0.0820)

ηi + ηj 0.00404 -0.00474 -0.00479
(0.0545) (0.0548) (0.0548)

Familyij 1.906∗∗∗ 1.906∗∗∗ 1.806∗∗∗
(0.112) (0.112) (0.145)

Familyij × |ηi − ηj| 0.107
(0.0913)

Village Dummies Yes Yes Yes Yes Yes
Other Controls No No No No No
N 71052 71052 71052 71052 71052
Dyadic robust standard errors are reported in parentheses (Fafchamps and Gubert, 2007). All specifications
are dyadic linear probability models with matching in the risk sharing network as the dependent variable.
ηi is risk aversion of individual i, so |ηi − ηj | is the absolute difference of risk aversion while ηi + ηj is the
sum. Both absolute differences and sums of risk aversion are transformed into z-scores.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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A.6.3 Tetrad Logit Results

As a robustness check on the role of degree heterogeneity, I estimate tetrad logit in each village
(Graham, 2017).32 I estimate the models in Python 3.7 using the netrics package.

Turning to the results, in Table A10 Panel A I focus on the estimates unconditional on the
sum of risk aversion for each village. As this method tends to be unfamiliar, some interpretation
of the reported output sizes may be useful. For each network, the procedure generates all tetrads
of nodes. For example, for Darmang, we have 164 nodes, so it generates

(
164
4

)
= 29, 051, 001

tetrads. 159, 341 tetrads are selected by the kernel function (i.e., such that degree heterogeneity
is balanced). (The fact that most of the tetrads are not used is not totally surprising as in most real
world social networks, most tetrads will be empty.) I have included the number of nodes, and the
number of tetrads used, as well as the fraction of tetrads used for each village.

Two of these village coefficients are negative and of similar magnitude to the logit coefficient,
while one is very close to zero, and one is 2.5-3 times as large as the logit coefficient. While
three of these estimates are themselves insignificant, this is largely due to the loss in power from
splitting my sample into four parts. In fact, the simple average of the village coefficients without
controls is very similar to the logistic coefficient when controlling for the sum of risk aversion.
Additionally, as presented in Table A10 Panel B, the change in the estimated effect of the difference
in risk aversion is not as pronounced in these estimates as it was in linear probability model or
the logistic regression results presented earlier. The coefficients on the sum of risk aversion also
fall in the tetrad logit specifications. This gives me confidence in the validity of my preferred
specification as presented in the main text.

Interestingly, when this same back of the envelope calculation is done for the detected insur-
ance group tetrad logit results, I also find similar results to the logistic regression results. These
can be found, by village, in Table A11. As before, this represents an attenuation of assortative
matching in detected insurance groups relative to risk sharing networks.33

32While it is theoretically possible to build an estimate from multiple villages by brute force, a back-of-the-
envelope calculation indicates to me that I do not have the computing resources to do so as my disposal. This might
be avoided with greater understanding of the function that indexes tetrads, using this same function and adjusting
the inputs to feed in the dyadic and tetrad mappings within villages.

33This fact may be useful for future empirical work on network formation. In particular, since community detec-
tion can construct communities of varying size, walktrap communities with short path lengths might in fact serve
as useful in estimating assortative matching in practice.
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Table A10: Tetrad Logit with Risk Sharing Network

Outcome: Match Between i and j in Risk Sharing Network
Village Simple Average

Darmang Pokrom Oboadaka Konkonuru = (1)+(2)+(3)+(4)
4(1) (2) (3) (4)

Panel A: Unconditional Estimates
|ηi − ηj| −0.432 −0.144 −0.088 0.098 −0.141

(0.109) (0.117) (0.109) (0.082)

Panel B: Conditional Estimates
|ηi − ηj| −0.451 −0.216 −0.053 0.184 −0.134

(0.115) (0.124) (0.116) (0.097)

ηi + ηj −0.097 −0.197 0.127 0.231 0.016
(0.101) (0.141) (0.140) (0.114)

Nodes 164 154 150 165
N Tetrads Used 159341 20463 38532 149422
Fraction Tetrads Used 0.54% 0.09% 0.19% 0.50%

Standard errors are presented in parentheses below logistic regression coefficients. Fraction of tetrads used de-
notes the fraction which are selected via the kernel function presented in Graham (2017), and is static across the
two regressions.
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Table A11: Tetrad Logit with Detected Insurance Groups

Outcome: i and j co-members in Detected Insurance Group
Village Simple Average

Darmang Pokrom Oboadaka Konkonuru = (1)+(2)+(3)+(4)
4(1) (2) (3) (4)

Panel A: Unconditional Estimates
|ηi − ηj| −0.139 −0.183 0.027 0.061 −0.059

(0.102) (0.073) (0.068) (0.064)

Panel B: Conditional Estimates
|ηi − ηj| −0.154 −0.201 0.002 0.067 −0.063

(0.103) (0.086) (0.073) (0.067)

ηi + ηj −0.115 −0.054 −0.099 0.034 −0.059
(0.116) (0.101) (0.092) (0.086)

Nodes 164 154 150 165
Tetrads Used 279058 72769 99476 225251
Fraction Tetrads Used 0.96% 0.33% 0.49% 0.76%

Standard errors are presented in parentheses below logistic regression coefficients. Fraction of tetrads used de-
notes the fraction which are selected via the kernel function presented in Graham (2017), and is static across the
two regressions.

59



A.7 Subgraph Generation Models

A.7.1 Estimation

For each model, I estimate β̃ =
(
{β̃I,ℓ}∀ℓ, {β̃L,ℓ,ℓ}∀ℓ, {β̃L,ℓ,r}∀ℓ,∀r

)
. β̃I,ℓ is the coefficient for iso-

lates of type ℓ, β̃L,ℓ,ℓ is the coefficient for within links of type ℓ, and β̃L,ℓ,r is the coefficient for
links between type ℓ and r. Coefficients are estimated,

β̃I,ℓ =

∑n
i=1 1(deg(i) = 0|li = ℓ)

nℓ

(28)

β̃L,ℓ,ℓ =

∑n−1
i=1

∑n
j=i+1 aij × 1(li = ℓ)× 1(lj = ℓ)∑n−1

i=1

∑n
j=i+1 1(li = ℓ)× 1(lj = ℓ)

(29)

β̃L,l,r =

∑n−1
i=1

∑n
j=i+1 aij × (1(ℓi = l)× 1(ℓj = r) + 1(ℓi = t)× 1(ℓj = l))∑n−1

i=1

∑n
j=i+1 1(ℓi = l)× 1(ℓj = r) + 1(ℓi = t)× 1(ℓj = l)

. (30)

For simplicity I index features with s. From proposition C.2 in Chandrasekhar and Jackson (2021)
under a sparsity condition34, Σ−1/2(β̃n − βn

0 ) → N(0, I) where βn
0 is the true rate of subgraph

generation. For a feature ℓ, the variance of the feature is the entry on the diagonal and the
standard errors are the square root:

Σs,s =
βn
0,s(1− βn

0,s)

κs

(
n
ms

) and σ̃s,s =

√
β̃n
s (1− β̃n

s )

κs

(
n
ms

) . (31)

wherems is the number of nodes involved in the feature and κs is the number of different possible
relabelings of the feature (note: for both isolates and links κs = 1). For the results, κs

(
n
ms

)
is the

sample size of the feature.

A.7.2 Pooled Subgraph Generation Models

Let countsv be the count of some subgraph s in village v, and potentialsv be the potential number
of times that feature could occur. These reflect the numerator and denominator, respectively, of
equations 28, 29, and 30 above. I estimate the coefficient associated with some subgraph s

β̃s =

∑4
v=1 countsv∑4

v=1 potentialsv
. (32)

34First, my networks are sparse by the definition of Chandrasekhar and Jackson (2021). If I assume a constant
growth rate of the density of links, then density is growing at about n1/3 or less (which is acceptable). Second, for
this particular model, none of the features chosen can incidentally generate any other feature. For example, links
cannot generate isolates, nor can isolates generate links. Because the second is true for this particular model, noting
the sparsity condition may be cracking a walnut with a sledgehammer, so to speak.
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This estimate uses only the relevant potential occurrences of the feature. Similarly, when esti-
mating the standard errors of a feature, I cannot use the same effective sample size as I would
use if I combined the networks. Let nv be the number of nodes in the village network. If I take
κs

(∑
nv

ms

)
, I would includemany combinations of nodes that in reality could not form the subgraph

in question. Hence I estimate the standard errors the of pooled SUGM

σ̃s,s =

√√√√ β̃s(1− β̃s)

κs ×
∑4

v=1

(
nv

ms

) . (33)

A.7.3 Approximation of Variance of Ratios

I use an approximation of the variance of ratios.35 We want the ratio of the variance of two
coefficients β̃L,s and β̃L,ra,

V ar

(
β̃L,s

β̃L,ra

)
=

(
β̃L,s

β̃L,ra

)2(
(σs)

2

(β̃L,s)2
− 2Cov(β̃L,s, β̃L,ra)

β̃L,sβ̃L,s

+
σ2
ra

β̃2
L,ra

)

Given that the two coefficients derive from a similar data generating process and measure a sim-
ilar quantity, it is intuitive that Cov(β̃L,s, β̃L,ra) > 0. My priors are that the correlations between
these two coefficients would be close to one, but are unknown. Therefore, it is conservative to
estimate the variance of the ratio by assuming Cov(β̃L,s, β̃L,ra) = 0, since this term enters nega-
tively. This assumption leaves us with the expression

V ar

(
β̃L,s

β̃L,ra

)
=

(
β̃L,s

β̃L,ra

)2(
(σs)

2

(β̃L,s)2
+

σ2
ra

β̃2
L,ra

)

for the variance of the ratios.

35See https://www.stat.cmu.edu/ hseltman/files/ratio.pdf.
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A.7.4 Full Results of SUGM Estimation

Table A12: Baseline Pooled Subgraph Generation Model with Risk Sharing Network

Feature Count Potential Sample Size Coef. Std. Err.
Isolates:

Nuisance 51 180 633 0.2833 0.0179
Risk Averse 41 453 633 0.0905 0.0114

Within Links:
Nuisance 76 3973 49852 0.0191 0.0006

Risk Averse 1030 25472 49852 0.0404 0.0009
Between Links:
Risk Averse, Nuisance 502 20407 49852 0.0246 0.0007

Baseline Pooled SUGM using the risk sharing network with features including links and isolates by
whether nodes are risk averse or are nuisances. Nuisance nodes are those who either have unmea-
sured risk aversion (i.e., were not surveyed) or who are risk loving, who I assume would not engage in
risk sharing. Count is the number of subgraphs which actually display the feature, potential is the to-
tal number that could display the feature, and sample size is that used to estimate the standard errors.

Table A13: Baseline Pooled Subgraph Generation Model with Detected Insurance Groups

Feature Count Potential Sample Size Coef. Std. Err.
Isolates:

Nuisance 58 180 633 0.3222 0.0186
Risk Averse 60 453 633 0.1325 0.0135

Within Links:
Nuisance 177 3973 49852 0.0446 0.0009

Risk Averse 2365 25472 49852 0.0928 0.0013
Between Links:
Risk Averse, Nuisance 1311 20407 49852 0.0642 0.0011

Baseline Pooled SUGM using detected insurance groups with features including links and isolates by
whether nodes are risk averse or are nuisances. Nuisance nodes are those who either have unmea-
sured risk aversion (i.e., were not surveyed) or who are risk loving, who I assume would not engage in
risk sharing. Count is the number of subgraphs which actually display the feature, potential is the to-
tal number that could display the feature, and sample size is that used to estimate the standard errors.
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Table A14: Preferences Pooled Subgraph Generation Model with Risk Sharing Network

Feature Count Potential Sample Size Coef. Std. Err.
Isolates:

Less risk averse 22 236 633 0.0932 0.0116
More risk averse 19 217 633 0.0876 0.0112

Risk loving 13 82 633 0.1585 0.0145
Not surveyed 38 98 633 0.3878 0.0194

Within links:
Less risk averse 421 7511 49852 0.0561 0.001
More risk averse 186 6223 49852 0.0299 0.0008

Risk loving 33 814 49852 0.0405 0.0009
Not surveyed 20 1181 49852 0.0169 0.0006

Between links:
Less risk averse, more risk averse 423 11738 49852 0.036 0.0008

Less risk averse, risk loving 163 4765 49852 0.0342 0.0008
Less risk averse, not surveyed 132 5994 49852 0.022 0.0007
More risk averse, risk loving 141 4475 49852 0.0315 0.0008

More risk averse, not surveyed 66 5173 49852 0.0128 0.0005
Risk loving, not surveyed 23 1978 49852 0.0116 0.0005

Preferences Pooled SUGM using the risk sharing network with features including links and isolates by whether
nodes are less risk averse, more risk averse, are risk loving, or have unmeasured risk aversion (were not surveyed).
Count is the number of subgraphs which actually display the feature, potential is the total number that could display
the feature, and sample size is that used to estimate the standard errors.
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Table A15: Preferences Pooled Subgraph Generation Model with Detected Insurance Groups

Feature Count Potential Sample Size Coef. Std. Err.
Isolates:

Less risk averse 38 236 633 0.161 0.0146
More risk averse 22 217 633 0.1014 0.012

Risk loving 17 82 633 0.2073 0.0161
Not surveyed 41 98 633 0.4184 0.0196

Within links:
Less risk averse 893 7511 49852 0.1189 0.0014
More risk averse 444 6223 49852 0.0713 0.0012

Risk loving 59 814 49852 0.0725 0.0012
Not surveyed 42 1181 49852 0.0356 0.0008

Between links:
Less risk averse, more risk averse 1028 11738 49852 0.0876 0.0013

Less risk averse, risk loving 373 4765 49852 0.0783 0.0012
Less risk averse, not surveyed 379 5994 49852 0.0632 0.0011
More risk averse, risk loving 311 4475 49852 0.0695 0.0011

More risk averse, not surveyed 248 5173 49852 0.0479 0.001
Risk loving, not surveyed 76 1978 49852 0.0384 0.0009

Preferences Pooled SUGM using the detected insurance groups with features including links and isolates by whether
nodes are less risk averse, more risk averse, are risk loving, or have unmeasured risk aversion (were not surveyed).
Count is the number of subgraphs which actually display the feature, potential is the total number that could display
the feature, and sample size is that used to estimate the standard errors.
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B Theoretical Model: Covariate Risk Sharing in Groups

B.1 Focus on Risk Averse Individuals

As presented in Section 2, about 20% of the individuals in the sample are measured as having risk
loving preferences. Close readers might reason that these individuals would take on covariate
risk from others and would also appreciate the premium to do so. However, I do not model them
as so, instead focusing on only risk averse individuals.

I make this decision for two reasons. First, I find it likely that risk loving individuals would
be less inclined and less welcomed in risk sharing arrangements. In this model idiosyncratic and
covariate risk sharing are a “package deal.” That is, to be in the covariate risk sharing arrangement,
one must also be in the idiosyncratic risk sharing arrangement. This would serve as a disincentive
for these risk loving individuals. Depending on the ratio of idiosyncratic and covariate risk, this
might be enough to dissuade these individuals from participating. If risk sharing networks are
pairwise stable (Jackson andWolinsky, 1996), this may also serve as a disincentive for risk averse
individuals to accept risk loving respondents as risk sharing partners. While the formal model
abstracts away from heterogeneity in income variance and downside risk, risk loving individuals’
preferences would suggest they would take on more risk (or different kinds of risk, e.g., downside
risk). Indeed, we see that risk loving individuals tend to have high income risk (though similar in
variance to others who are less risk averse), have greater average losses from risk, and a greater
ratio of net losses to net gains (see Table 1). While we do not model heterogeneity in income
variance, others do. They find that high risk individuals are included only by those with similar
risk profiles (e.g., Jaramillo et al., 2015; Gao and Moon, 2016; Xing, 2020). Indeed, risk loving
individuals are more likely to be isolates in the risk sharing networks (see Table 1).

Second, more practically, it is somewhat difficult to make sense of respondents whose av-
erage choices in the hypothetical gamble are consistent with being risk loving. Their average
choice hides some nuance, that respondents are not always consistent across domains. Notably,
a number of respondents give answers that tend to accord with the s-shaped value function of
prospect theory, where individuals are risk averse in gains and risk loving in losses (Kahneman
and Tversky, 1979). Specifically, only 13.9% of respondents are risk loving in gains (considering
those who answered both questions in this domain) while 35.8% are risk loving in losses. It seems
unlikely that a respondent with prospect theory preferences would take on risk for free. A small
number of others are risk loving in gains and risk averse in losses. The full distribution of risk
preferences by domain can be found in Figure B1. While less intuitive considering the social sci-
ence literature, it is also not so clear that net risk loving individuals who are risk averse in losses
would take on risk for free. Therefore, this choice also saves me from forcing risk loving behavior
on individuals who are risk averse in some domains.
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Figure B1: A visualization of CARA risk preferences by gamble domain. The upper right and lower
left quadrants accord (loosely) with expected utility theory. The lower right quadrant accords
with prospect theory. The upper right hand quadrant has no associated behavioral theory, and
are therefore coined as ‘unicorns.’ The diagonal line indicates risk neutrality on average.

B.2 Expected Utility

Because shocks are normally distributed, expected utility for both types is equivalent to maxi-
mizing the mean-variance representation as seen in Sargent (1987).

E(Uℓ(cℓi)) = E(cℓi)−
ηℓi
2
V ar(cℓi)

Also note CARA utility function increases in consumption. Thus, the agent consumes all income
and transfers available in all states of the world. Expected consumption for type 1 isE(c1i) = λ1i
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and for type 2, E(c2i) = λ2i. Variance for the two types can be computed:

V ar(c1i) =

(
θ

p

)2(
σ2

N
+ ν2

)
and V ar(c2i) =

(
1− θ

1− p

)2(
σ2

N
+ ν2

)
.

So then I write expected utility

E(Uℓ(c1i)) = λ1i −
η1i
2

(
θ

p

)2(
σ2

N
+ ν2

)
and E(Uℓ(c2i)) = λ2i −

η2i
2

(
1− θ

1− p

)2(
σ2

N
+ ν2

)
.

For ease of notation, I define σ2
c = σ2

N
+ν2 and note that the utility of the more risk averse agents

when only idiosyncratic risk is pooled is equal to EU0 = −η2i
2
σ2
c .

B.3 Feasibility of Risk Sharing

Due to constraints 11, 12 and 13, budget constraints bind at the group level. To see this, I sum up
the two types using weights:

pc1i + (1− p)c2i ≤ θ

(
1

N

N∑
i=1

ỹi + ỹv

)
+ pλ1 + (1− θ)

(
1

N

N∑
i=1

ỹi + ỹv

)
+ (1− p)λ2

N1c1i +N2c2i ≤
N∑
i=1

ỹi +Nỹv.

Hence total consumption shocks to types 1 and 2 are bounded by total income shocks and informal
insurance is feasible.

B.4 Solving the Lagrangian

I construct the Lagrangian retaining constraints 10 and 13 (with a2 and a3 as multipliers, respec-
tively) and incorporate the consumption constraints into expected utlity.

L = λ1 −
η1
2

θ2

p2
σ2
c + a

(
λ2 −

η2
2

(1− θ)2

(1− p)2
σ2
c +

η2
2
σ2
c

)
+ b (pλ1 + (1− p)λ2)

The first order conditions are as follows:

∂L
∂λ1

= 1 + bp = 0 (34)

∂L
∂λ2

= a+ b(1− p) = 0 (35)
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∂L
∂θ

=
−η1θσ

2
c

p2
+ a2

(
η2(1− θ)σ2

c

(1− p)2

)
(36)

∂L
∂a

= λ2 −
η2
2

(
1− θ

1− p

)2

σ2
c +

η2
2
σ2
c = 0 (37)

∂L
∂b

=pλ1 + (1− p)λ2 = 0 (38)

Using FOC 34 I note that b = −1
p
. Likewise, using FOC 35 I note that a = 1−p

p
. Rearranging

FOC 37, FOC 38, and substituting :

λ2 = −η2
2

(
1−

(
1− θ

1− p

)2
)

⇒ λ1 = −
(
1− p

p

)
λ2 =

(
1− p

p

)
η2
2

(
1−

(
1− θ

1− p

)2
)

Finally, I simplify FOC 36 to find θ:

η1θσ
2
c

p2
=

1− p

p

(
η1(1− θ)σ2

c

(1− p)2

)
⇒
(
η1
η2

)(
1− p

p

)
=

1− θ

θ

⇒ 1

θ
=

(
η1
η2

)(
1− p

p

)
+ 1 ⇒ θ =

pη2
(1− p)η1 + pη2

.

Covariate risk will not be taken on fully by the less risk averse agents. θ = 1 only if either η1 = 0

(type 1 is risk neutral, which we’ve assumed is not true) or p = 1. Note

(1− θ)2 =

(
1− pη2

(1− p)η1 + pη2

)2

=

(
1− (1− p)η1

(1− p)η1 + pη2

)2

=
(1− p)2η21

((1− p)η1 + pη2)2
.

So then we can express the payment between type 1 and type 2 agents:

λ2 = −η2
2

(
1− η21

((1− p)η1 + pη2)2

)
.

B.5 The Rate of Risk Pooling

One result of the theoretical model is that the proportion of risk taken on by less risk averse
individuals in a group in equilibrium is greater than their proportion of the group. To see this,
note that since η1 < η2 by assumption pη2 + (1− p)η1 < pη2 + (1− p)η2 = η2. Thus,

θ∗(p, η1, η2) =
pη2

pη2 + (1− p)η1
>

pη2
η2

= p.
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B.5.1 Value Functions

These solutions lead to the value functions:

V1(p, η1, η2) =
η2
2

(
1− p

p

)(
1−

(
η1

(1− p)η1 + pη2

)2
)

(39)

− η1
2

(
η2

(1− p)η1 + pη2

)2(
σ2

n
+ ν2

)
V2(p, η1, η2) =− η2

2

(
1 +

(
η1

(1− p)η1 + pη2

)2((
σ2

n
+ ν2

)
− 1

))
. (40)

I compute the value functions for type 1 and type 2 individuals.

V1(p, η1, η2) = E(U1(c1i)|θ∗(p), λ∗
1(p)) = λ∗

1(p)−
η1
2

(
θ∗(p)

p

)2

σ2
c

= λ∗
1(p)−

η1
2

(
pη2

((1− p)η1 + pη2)p

)2

σ2
c = λ∗

1 −
η1
2

(
η2

((1− p)η1 + pη2)

)
σ2
c

V1(p, η1, η2) =
η2
2

(
1− p

p

)(
1−

(
η1

(1− p)η1 + pη2

)2
)

− η1
2

(
η2

(1− p)η1 + pη2

)2

σ2
c

V2(p, η1, η2) = E(U2(c2i)|θ∗(p), λ∗
2(p))

= λ∗
2(p)−

η2
2

(
1− θ∗(p)

1− p

)2

= λ∗
2(p)−

η2
2

(
1− pη2

(1−p)η1+pη2

1− p

)2
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(
(1− p)η1 + pη2 − pη2

(1− p)((1− p)η1 + pη2)
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σ2
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2(p)−

η2
2

(
(1− p)η1

(1− p)((1− p)η1 + pη2)

)2

σ2
c

= λ∗
2(p)−

η2
2

(
η1

(1− p)η1 + pη2

)2

σ2
c

= − η2
2

(
1− η21

((1− p)η1 + pη2)2

)
− η2

2

(
η1

(1− p)η1 + pη2

)2

σ2
c

V2(p, η1, η2) = − η2
2

(
1 +

(
η1

(1− p)η1 + pη2

)2 (
σ2
c − 1

))

B.6 Optimal Assignment and Village Composition

Optimal composition of groups occurs when the proportion of individuals within the group is
equal to that in the village. As a demonstration is not an artifact of equal sized groups, I vary the
composition of types in the population in Figure B2. In this figure, welfare is maximized when
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pA1 = p1, the proportion of type 1 agents in the population.
In addition, it is interesting to understand what proportion of covariate risk is shared in each

group as a planner sorts types into two groups. Figure B3 demonstrates how the proportion of
risk sharing in larger and smaller groups varies by composition. As type 1 individuals move from
the larger group to the smaller group, a greater proportion of covariate risk, encapsulated by θ is
taken on by these individuals within the smaller group. This results in a risk management frontier
which is bowed out. When more risk neutral agents are all in the larger or smaller group, they
come close to taking on all of the covariate risk.
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Figure B2: Optimal Allocation of Types Between Unequally Size Groups with varying numbers
of type 1 and type 2 agents.
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Figure B3: A Risk Management Frontier: Proportion of Covariate Risk Taken on by Less Risk
Averse Agents in Groups. From top left to bottom right, type 1 agents move from the larger
group to the smaller one.
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B.7 TheWelfare Implications of Risk Preferences

I measure risk aversion using hypothetical gambles. Though these gambles return those who are
more and less risk averse, it is likely that the relatively low stakes of the hypothetical gamble
may yield coefficients of risk aversion much lower than we might observe with a high stakes
incentivized gamble. Moreover, if risk aversion is underestimated, then the welfare impact of
risk sharing will also be underestimated. Even within the local range of risk aversion measured,
we can see non-trivial differences in losses due to risk. For example, Figure B4 shows how losses
due to observed assortative matching increase with risk aversion of more risk averse agents.
Furthermore, see Figure A2 which shows a mass of top-coded coefficients of risk aversion.

−150

−120

−90

0.002 0.004 0.006
CARA Coef. of More Risk Averse Agents (Type 2)

To
ta

l L
os

s 
du

e 
to

 R
is

k

Proportion 
type 1 agents

0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5

Figure B4: Greater risk aversion increases the welfare impact of assortative matching. As risk
aversion increases villages with greater assortative matching will suffer more than those without.
However, the delta between degrees of assortative matching is subject to diminishing marginal
losses. The dashed vertical line indicates the measured degree of risk aversion among type 2
agents.
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C Simulation Methods

C.1 Simulation Algorithm

Before simulating, I remove all individuals who do not have preference data or who are not risk
averse, and discard resulting groups with only one member.

1. Sort groups into two binswith roughly equal total populations. The first binwill bemajority
type 1 and the second will be majority type 2. To assign groups, first I sort the groups into
a random order. I designate a bin of type 1 majority and one for type 2 majority, and
then I construct a running membership sum for each bin. I add a group to bin 1 when
sum1 ≤ sum2 and to bin 2 otherwise and proceed until all groups have been added.36

2. Assign nodes of differing types to groups using a binomial process, varying the probability
of success in that process according to what is implied by that scenario (i.e., pU ). A success
assigns a majority type node to that group while a failure assigns a minority type node.

3. Compute the value functions for type 1 and type 2 agents in each group according to the for-
mulas found in Appendix B.5.1 and average across individuals to determine the per capita
losses due to covariate risk. These are reported in units of Purchasing Power Parity (PPP).

Each of these steps is repeated for each repetition of the simulation.

C.2 Rate of Between Link Generation

How many connections are there between types in groups? The complete bipartite graphs yields
simple counts. A complete bipartite graph with N1g of type 1 and N2g of type 2 will have
N1gNg2 connections. Thus, the total number of actual connections between types within groups
is
∑G

g=1N1gN2g. Additionally, the total number of potential links between types in the entire
village graph will be(

G∑
g=1

N1g

)(
G∑

g=1

N2g

)
= N1N2. ⇒ β̃1,2 =

∑G
g=1N1gN2g

N1N2

.

I assume equal parts of type 1 and type 2 agents, which I impose empirically as well, so then
N1 = N2 and N1 +N2 = N so N1 = N2 =

N
2

β̃1,2 =

∑G
g=1N1gN2g

N2

22

=
4×

∑G
g=1 N1gN2g

N2

36Directly minimizing the difference in total membership in type 1 and type 2 majority groups is an np-hard
problem. This approach serves as a workaround.
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β̃1,2 = 4×
G∑

g=1

N1g

N

N2g

N
= 4×

G∑
g=1

Ngp1g
N

Ngp2g
N

= 4×
G∑

g=1

(
Ng

N

)2

p1gp2g

For the last equality, recall that pℓg = Nℓg

Ng
. I make the (heroic) simplifying assumption that group

sizes are the same, hence there’s a fixed Ng

N
= 1

G
. Additionally, I fix p1g = p̄U and p2g = p̄L when

p1g ≥ p2g and vice-versa when p1g < p2g, where p̄U = 1− p̄L.

β̃1,2 =
4

G2
×

G∑
g=1

p1gp2g =
4

G2
×

G∑
g=1

p̄U p̄L

Finally, I sum across groups and then rearrange to get the expression for β̃1,2 =
4
G
p̄U p̄L.

C.3 Rate of Within Risk Averse Link Generation

The total number of potential links generated is N(N−1)
2

. With completely connected groups, the
number of connections ends up being

∑G
g=1 Ng(Ng−1)

2
. Suppose also, as above, that Ng =

N
G
. Then,

β̃L =

∑G
g=1 Ng(Ng−1)

2
N(N−1)

2

=

∑G
g=1Ng(Ng − 1)

N(N − 1)

=

∑G
g=1

N
G
(N
G
− 1)

N(N − 1)
=

N(N
G
− 1)

N(N − 1)
=

(N
G
− 1)

(N − 1)
=

(N −G)

G(N − 1)
.

C.4 Ratio of Rates

The ratio of rates is
β̃1,2

β̃L

=

(∑G
g=1 N1gN2g

)/
N1N2(∑G

g=1 Ng(Ng−1)

2

)/(
N(N−1)

2

)
.

Based on the simplifications above, however, I can express the ratio of the link generation coef-
ficients as an expression relating the proportion of types in each group to the rate of generation.

β̃1,2

β̃L

=
4
G
p̄U p̄L

(N−G)
G(N−1)

= 4
(N − 1)

(N −G)
p̄U p̄L ⇒ p̄U p̄L =

(
1

4

)(
N −G

N − 1

)(
β̃1,2

β̃L

)

The RHS of the equation lies between 0 and 1
4
. Note that as N becomes large,

(
N−G
N−1

)
→ 1.

However, the small sample correction does account for the fact that between type connections
make up a larger share of connections than within connections (note: when loops are omitted).
Another way to think of this is when sampling pairs, sampling without replacement only matters
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when sampling pairs within a type. Therefore, I leave in the small sample correction. I can solve
the above by using a system of equations where p̄U + p̄L = 1, and use the quadratic formula to
get an analytic solution:

(pU , pL) = 0.5± 0.5×

√√√√1−
(
N −G

N − 1

)(
β̃1,2

β̃L

)

where pL ≤ 0.5 ≤ pU .
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