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Abstract

When risk preferences are heterogeneous, welfare can be improved by shifting covariate
shocks from risk averse to risk tolerant people in exchange for a premium. However, this
type of risk pooling depends on whether people prefer to share risk with others who have
similar risk preferences. To investigate this question, I build a theoretical model of risk pool-
ing with heterogeneous risk preferences. I use detailed data from Ghana to construct village
risk sharing networks and community detection to construct community networks—which
bound the scope of risk pooling. With econometric models of network formation, I estimate
a preference to match on risk preferences in risk sharing networks. Within community net-
works, the magnitude of assortative matching falls considerably. I compare this allocation of
types to three benchmarks, including an optimal and worst-case scenario, finding that the
observed networks deviate only slightly from optimal networks for this form of risk pooling.
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1 Introduction

The economic position of the rural poor is precarious, vulnerable to losses from both idiosyncratic
and covariate shocks (Ligon and Schechter, 2003; Günther and Harttgen, 2009; Collins et al., 2010).
Idiosyncratic risks include shocks like illness, loss of employment, and theft, or the loss of a fam-
ily member, that are uncorrelated between individuals or households in localities. In contrast,
covariate risks like output price and weather shocks are correlated among these individuals or
households. Despite the recent adoption of digital financial services in some markets, risk man-
agement tools to manage such risks are still missing for many (Demirguc-Kunt et al., 2018). This
fact may prevent risk taking which would result in higher incomes over the long term (Elbers
et al., 2007; Karlan et al., 2014). In the absence of formal financial markets, informal risk shar-
ing, mediated through social networks, is a common and important method of managing risk
(Fafchamps and Lund, 2003; Comola and Fafchamps, 2017).

The classic story of informal risk sharing is as follows: two people are seeking to insure their
consumption against idiosyncratic risks. If you lose your job, I pay you; If I lose my job, you pay
me. Evidence is often consistent with a high degree of idiosyncratic risk sharing even in light
of information asymmetries (Kinnan, 2021). In contrast, sharing of covariate risks is much less
explored, despite the fact that most studies are set in rural economies where the role of covariate
risk is more prominent (Günther and Harttgen, 2009). When risk preferences are heterogeneous,
sharing covariate risk can lead to welfare improvements by shifting risks from more risk averse
to less risk averse agents in exchange for a premium (Chiappori et al., 2014).1 In this story of
informal risk sharing, the less risk averse agent takes the hit in a bad year; In a good year, they
receive the prize; and in all years, they are rewarded by the more risk averse agent for taking on
this risk. In essence, less risk averse agents become local insurance companies for their peers.2

This story of covariate risk sharing, however, depends critically on the proximity of less and
more risk averse agents in social networks. In contrast, there is a tendency to connect to those
similar to oneself in social and economic networks (McPherson et al., 2001). As has been docu-
mented experimentally, this pattern of positive assortative matching on risk preferences—or the

1With the adoption of mobile money and other digital payment systems in recent years, it is important to de-
lineate this story of covariate risk sharing from digitally mediated inter-village risk sharing, which might also help
cope with locally covariate risk (Jack and Suri, 2014). For those who have adopted mobile money, what we think
of as covariate shocks (droughts, flooding, earthquakes) may become idiosyncratic (Blumenstock et al., 2016; Riley,
2018).

2While this paper abstracts away from the specific transactions that might allow for covariate risk sharing, con-
crete notions of suitable arrangements can be found. For example, the literature on sharecropping places sharecrop-
ping as a way for a more risk averse renter to pass risk to their less risk averse landlord (Stiglitz, 1974; Braverman
and Stiglitz, 1986). Similarly, renters would need to be more risk averse than landlords (Allen and Lueck, 1995).
Sharecropping is relatively common in the context at hand, accounting for about 50% of rental contracts (Goldstein
and Udry, 2008).
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tendency of those with similar risk preferences to be connected in networks—arises as a barrier
to covariate risk sharing (Attanasio et al., 2012). Given the degree of assortative matching on risk
preferences found in real world risk sharing networks, what quality of insurance can covariate
risk sharing deliver? Empirically, I study this question by asking if individuals form connections
with others who have similar or different risk preferences.

Using models of network formation and a theoretical model of risk pooling, (i) I estimate the
degree to which agents match with those who have similar risk preferences, and (ii) quantify the
impacts to welfare from this aspect of network structure. To measure the degree of assortative
matching on risk preferences, I apply econometric models of network formation to rich microdata
featuring income shocks, network ties, and risk preferences from a survey of four villages in
rural southern Ghana (Barrett, 2009). This setting features prominent correlated risk and the
data includes a detailed social networks module and a set of hypothetical gambles. I use two
main measures of the risk pooling network. First, I measure the risk sharing network using the
intersection of trust and gift networks. Second, I arrange individuals in risk pooling groups using
community detection—clustering methods which are sensitive to the details of networks (Pons
and Latapy, 2005; Newman, 2012). I argue this measure of risk pooling groups accounts for the
possible scope of risk pooling in networks (i.e., the relevant set of individuals) (Putman, 2022). For
risk preferences, I back out coefficients of absolute risk aversion using the hypothetical gambles.

To translate my estimates of assortative matching into concrete welfare estimates, I construct
a theoretical model of optimal risk pooling in a village setting. In this model, I abstract away from
the question of matching to focus on how a planner allocates individuals to subvillage groups.
While idiosyncratic risk is assumed to be fully pooled at the group level, covariate risk is not. The
social planner assigns individuals to two risk pooling groups according to their risk aversion in
order to optimally share covariate risk. According to this model, optimal risk pooling happens
when the composition of the groups reflects the composition of the village with respect to risk
aversion. For example, if the village is made up of 50% less risk averse individuals, you would
prefer each group to also be made up of 50% less risk averse individuals. This result implies that
optimal risk pooling should feature no assortative matching on risk preferences.3

I use estimates from several econometric models of network formation to characterize assor-
tative matching. These models use differences in risk preferences to explain connections in the
risk sharing and community network. Dyadic regression, which treats dyads of individuals as the
unit of study, serves as a reduced form approach to estimating assortative matching in risk pref-
erences (Graham, 2020). Using this model, I estimate that individuals do prefer to assortatively

3Since I model high and low risk aversion individuals as types, I opt to describe optimal matching as no as-
sortative matching as opposed to positive assortative matching, which tends to rely on the intensity of node level
characteristics.
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match on risk preferences in the risk sharing network. That is, they prefer to match with individ-
uals who have a similar degree of risk aversion. While these results are conditional on controlling
for the sum of risk aversion, doing so solves a subtle omitted variable problem by controlling for
a correlation between popularity and risk aversion. Additionally, I find they are robust to alter-
native network formation models and modeling choices, including Subgraph Generation Models
(SUGMs) (Chandrasekhar and Jackson, 2021).4 Importantly, I structure the SUGMs to estimate
assortative matching between types so that I can translate estimates of assortative matching to
estimates of composition, as used within the theoretical model.

Exploring heterogeneity by family connections, I find stronger evidence of assortative match-
ing within families, which may suggest a stronger preference to match when information is better.
The SUGMs also allow for further exploration of who matches with whom: I find that assortative
matching is driven by less risk averse individuals, who tend to have higher degree overall and
harbor a preference to connect to their own type.

As I increase the radius of risk sharing from the risk sharing network to the community net-
work, assortative matching on risk preferences falls. In particular, using dyadic regression, I fail
to find evidence for assortative matching.5 Likewise, when estimating the SUGMs, I find that the
magnitude of assortative matching is attenuated in the community network vis a vis the risk shar-
ing network. In other words, risk pooling communities feature more diverse preferences than risk
sharing relationships, and risk sharing networks among family feature less diverse preferences.

What are the welfare impacts of this degree of assortative matching? I divide individuals into
more and less risk averse types and quantify the welfare implications of the allocation of types
in communities. To do this, I simulate four scenarios (a) an optimal scenario, with no assortative
matching (b) a community scenario, (c) a bilateral scenario, and (d) a worst case scenario, with
complete assortative matching. (a) and (d) are determined by the theoretical model derived ear-
lier, while (b) and (c) derive from empirical estimates from the SUGMs. Whereas the community
scenario (b) takes the degree of assortative matching estimated from the risk pooling community
estimates and the scope of risk pooling as detected, the bilateral scenario takes estimates of as-
sortative matching from the risk sharing network and places these within the scope measured
by the detected communities. I find substantial differences between the optimal and worst case
scenario, with the community and bilateral scenarios both falling close to optimal. First, despite
the observed assortative matching, I find that the observed networks tend to be close to optimal

4In addition to estimating SUGMs, I estimate tetrad logit, a model designed to account for degree heterogeneity
(Graham, 2017), where I find consistent results. The results are also robust to alternative specification choices par-
ticularly estimation as a logistic regression and controlling for a large set of dyadic characteristics. These controls
include demographics, occupation, education, and (family) network centrality.

5As I do with the risk sharing network, I replicate these results using alternative specifications including LPM
with controls, using dyadic logistic regression, and using tetrad logit.
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networks already. I.e., if 0% is the worst case scenario, and 100% is the optimum, observed assor-
tative matching in networks places us 75% of the way to the optimum. As one might expect, the
more diverse community networks function better for covariate risk pooling than the bilateral
networks. However, if I use full covariate insurance as a benchmark, even the optimal scenario
has losses equal to 16.5% of per capita consumption. This suggests that while individuals may be
able to do well with the risk management tools they are given, there are still large gains to be had
in improving these tools.

This work contributes to the present understanding of covariate risk sharing by situating it
within the context of local network structure. Recent work has suggested the potential for co-
variate risk sharing. For example, Chiappori et al. (2014) find considerable heterogeneity in risk
preferences under the assumption that risk sharing arrangements are complete within villages.
An implication of their model is that less risk averse agents might take on more of the covariate
risk in exchange for some increase in consumption over the long term. By relaxing the assump-
tion of risk sharing at the village level, I am able to examine the relationship between network
structure and covariate risk sharing, which I find to be important for welfare derived from risk
sharing.6

This work also contributes to the empirical study of assortative matching on risk preferences
in social networks, and to my knowledge is the first evidence of assortative matching on risk
preferences in village risk sharing networks.7 This reflects estimates from Attanasio et al. (2012)
which find assortative matching in a risk pooling experiment done in the lab. Beyond replicating
these results, the current work provides evidence of assortative matching on risk preferences in
both real world risk sharing relationships and in a new country context, strengthening the exter-
nal validity of this empirical result. Interestingly, these estimates are consistent with models of
assortative matching on risk preferences in the presence of idiosyncratic risk sharing (Attanasio
et al., 2012; Wang, 2015).

Finally, these results contribute to the greater policy discussion on economic development and
globalization. First, growing adoption of financial services in lower and middle income countries
may have unintended consequences for risk sharing networks (Dizon et al., 2019; Dupas et al.,
2019; Banerjee et al., 2022). By quantifying the importance of network structure, I reveal an im-
portant facet of the the net welfare effects of access to financial services. Second, some recent
interventions seek to facilitate the expansion of interfirm networks, finding that these interven-

6More broadly, this work also contributes to the study of the kinds of risk insured by informal risk sharing net-
works as well as the constraints faced due to assortative matching: Gao and Moon (2016) and Jaramillo et al. (2015)
study heterogeneity in risky endowments, while Xing (2020) studies heterogeneity in autocorrelation of (idiosyn-
cratic) risk.

7There is work on assortative matching in other dimensions, such as geography, wealth, religious affiliation, clan
membership, and kinship (De Weerdt, 2002; Fafchamps and Gubert, 2007).
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tions increase risk sharing transfers (Cai and Szeidl, 2018). This increase in the radius of risk
sharing suggests decreased assortative matching from such interventions, which could have the
added benefit of bolstering the conditions for covariate risk sharing. Third, climate change and
growing interconnections in trade and financial systems may increase the scale of crises (Stiglitz,
2003; Zscheischler et al., 2018; Elliott and Golub, 2022). A greater scale of crises, exemplified by
the COVID-19 pandemic, makes such covariate risk sharing all the more dear.

2 Theoretical Model

In this section, I build a model that considers a risk-neutral planner seeking to construct two
risk pooling communities in a village in order to maximize expected utility within risk averse
members of the village. Here I leave aside community size and its impact on community com-
position and focus on optimal community composition itself. I consider community composition
with regard to risk aversion, with relatively less and more risk averse individuals.8 I set up this
problem in two steps. First, I characterize how risk is pooled in a community according to its com-
position. Second, using the solutions and value functions from the first optimization problem, I
write a planner’s problem maximizing aggregate expected utility of consumption in a village with
communities, conditional on the composition of those communities.

2.1 Risk Sharing in Communities

To model covariate risk sharing in communities, I start from a baseline of perfect idiosyncratic
risk sharing. This means that all shocks that are above and below a villager’s mean income are
smoothed to their mean income (I will assume these are zero for the purposes of this problem).
After this set of transfers takes place, a round of risk shifting takes place. Less risk averse indi-
viduals may take on more of the covariate risk. This covariate risk derives from both the average
idiosyncratic shock—which in general is not zero—and a perfectly correlated covariate shock.9

More risk averse agents are able to take on less of the covariate risk, shifting them onto less risk
averse individuals. However, less risk averse individuals are still risk averse, so they require some
compensation for the risk they take on. Thus, recurring transfers are made to these individuals
regardless of the covariate shock.

8While, empirically, I also observe some risk loving individuals, I opt not to include them within the model. I
explain my reasoning for this choice in Appendix A.1.1.

9This shock is perfectly correlated because I want to explore the role of assortative matching on risk preferences
in the presence of covariate risk, as opposed to heterogeneity in income correlation between individuals.
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2.1.1 Setup

Suppose a community of fixed size N that sits within a village. Community member i has expo-
nential utility functions with coefficient of absolute risk aversion ηi:

ui(ci) =
1− e−ηici

ηi
.

Now, suppose there are low and high risk aversion households, where type is indexed by ℓ = 1, 2.
That is, η2 > η1 > 0. Nℓ is the number of individuals of type ℓ, and p = N1/N characterizes the
composition of the group in terms of these types. All households face a shock perfectly correlated
at the village level, ỹv and an idiosyncratic shock ỹi. Risk is symmetric between households and
between types: Household level shocks, ỹi ∼iid N(0, σ2) and village level shocks ỹv ∼iid N(0, ν2).
Income for agent i and type ℓ is computed yℓi = ỹi + ỹv. Taking account of the risk sharing
process, I write the consumption of household i of type ℓ as a weighted sum of the idiosyncratic
and covariate shocks in the community. For type ℓ = 1, 2,

c1i =

(
θ

p

)(
1

N

N∑
i=1

ỹi + ỹv

)
− λ1i and c2i =

(
1− θ

1− p

)(
1

N

N∑
i=1

ỹi + ỹv

)
− λ2i.

The proportion of covariate risk that is borne by the less risk averse individuals in the community
is regulated by the parameter θ ∈ [0, 1]. When θ = 1, all covariate risk is taken on by less
risk averse individuals, when θ = p, covariate risk is shared equally among all members of the
community (i.e., only idiosyncratic risk is pooled) and when θ = 0, all risk is taken on by more
risk averse households. λℓi regulates the recurring transfers from the more risk averse to the less
risk averse. Thus, total transfers into the pot exceed the total transfer out: −N1λ1i ≤ N2λ2i.
Finally, due to the exponential utility function and normal distribution of shocks, I represent
expected utility as a mean-variance decomposition (for details, see Appendix A.1.2):

E(Uℓ(cℓi)) = E(cℓi)−
ηℓi
2
V ar(cℓi).

2.1.2 Optimization Problem

The planner maximizes expected utility of less risk averse agents subject to several constraints.

max
λ1,λ2,θ

E(U1(c1i)) (1)

subject to E(U2(c2i|θ = p))) ≤ E(U2(c2i)) (2)
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c1i =

(
θ

p

)(
1

N

N∑
i=1

ỹi + ỹv

)
− λ1i (3)

c2i =

(
1− θ

1− p

)(
1

N

N∑
i=1

ỹi + ỹv

)
− λ2i (4)

0 ≤ pλ1 + (1− p)λ2 (5)

Constraint (2) is an incentive compatibility constraint: more risk averse agents cannot be worse
off than in the case where they only perfectly pool idiosyncratic risk. Constraints (3) and (4)
serve as individual budget constraints for each type, and finally, constraint (5) serves to ensure
the feasibility of the recurring transfers (for details, see Appendix A.1.3).

2.1.3 Solutions and Value Functions

How much covariate risk is shifted to the less risk averse agents? I solve the model, and present
this process in Appendix A.1.4. The proportion of covariate risk shared will depend on the risk
aversion and proportion of each type:

θ∗(p, η1, η2) =
pη2

(1− p)η1 + pη2
. (6)

Recall, if θ = 1, all covariate risk shifts to less risk averse individuals, and if θ = p, the baseline of
perfect idiosyncratic risk sharing is maintained. Since η2 > η1, θ∗(.) > p (for proof, see Appendix
A.1.5). This means some degree of covariate risk is shifted to less risk averse individuals. Likewise,
unless η1 = 0 (I assume it does not) or p = 1, some risk is still taken on by the more risk averse.
Furthermore, group composition matters for the degree of covariate risk sharing.

What are more risk averse agents willing to pay to shift risk away? Since λ∗
2 is paid into the

community pot, type 2’s willingness to pay depends on their own risk aversion, type 2’s risk
aversion, and group composition:

λ∗
2(p, η1, η2) = −η2

2

(
1− η21

((1− p)η1 + pη2)2

)
. (7)

where the expression in parentheses lies between 0 and 1. Because risk is symmetric in this
model (i.e., risk averse and risk loving types face the same covariate risk), the transfer does not
depend on covariate risk. Finally, type 1 will maximize their utility and hence the payments they
receive from type 2. I can write λ∗

1 by converting type 2’s willingness to pay into type 1’s average
payment:

λ∗
1(p, η1, η2) = −

(
1− p

p

)
λ∗
2(p). (8)
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These solutions lead to the value functions (see Appendix A.1.6 for derivation):

V1(p, η1, η2) =
η2
2

(
1− p

p

)(
1−

(
η1

(1− p)η1 + pη2

)2
)

(9)

− η1
2

(
η2

(1− p)η1 + pη2

)2(
σ2

n
+ ν2

)
V2(p, η1, η2) =− η2

2

(
1 +

(
η1

(1− p)η1 + pη2

)2((
σ2

n
+ ν2

)
− 1

))
. (10)

2.2 The Planner’s Problem

The risk neutral planner seeks to maximize aggregate expected utility of consumption, conditional
on the composition of communities. There are two communities, g = A,B. I will update the
notation from the first stage slightly. For a given community g, Ng is the community size and
NA +NB = N . Then Ngℓ is the number of individuals of type ℓ in community g and pgℓ =

Ngℓ

Ng
.

I state the planner’s problem as follows:

max
N1A

NA1V1(pA1) + NA2V2(pA1) + NB1V1(pB1) +NB1V2(pB1) (11)

subject to Nℓ = NAℓ +NBℓ, ℓ = 1, 2 (12)

Ng = Ng1 +Ng2, g = A,B (13)

To simplify this problem, I consider the simple case where there is an equal number of more and
less risk averse types. That is, N1 = N2. This implies that I can encompass the entire problem just
by looking at one choice parameter, p1A, and conditioning it on the size of the smaller community,
NA. pA1 = N1A

NA
, and I can express pA2 = 1 − pA1, pB1 = 2NB1

N
= 2(N1−NA1)

N
and pB2 = 1 − pB2.

Setting N1 = N2 reduces the set of constraints to three, and simple computations take account
of these three constraints:

max
NA1

NA1V1

(
NA1

NA

)
+NA2V2

(
NA1

NA

)
(14)

+NB1V1

(
2(N1 −NA1)

N

)
+NB1V2

(
2(N1 −NA1)

N

)
.

Solving this planner’s problem for an analytic solution is relatively difficult. However, it is easy
to characterize the optimal allocation of types numerically. In Figure 1, I plot the objective in
Problem 14 against pA1, the new choice variable. To construct this example, I set σ2

c = 292.882

(the square of the SE of net losses), N = 100, N1 = N2 = 50, and set η1 ≈ 0.0016, η2 ≈ 0.0037,
the average coefficients of absolute risk aversion in my data (see Section 3.2.1 for coefficients of
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Figure 1: Optimal Allocation of Types Between Unequally Sized Communities

risk aversion and types).
Inspecting Figure 1, welfare is maximized when pA1 = 0.5, i.e., when diversity of types is

maximized. Likewise, welfare is minimized as pA1 approaches 0 or 1, when diversity of types is
minimized. Interestingly, unequally sized suboptimal communities improve over more equally
sized suboptimal communities, holding pA1 equal. Also, welfare is not symmetrically suboptimal
when the proportion of less risk averse agents strays from zero. If a community is overfilled
with a type (i.e., pA1 ̸= 0.5) it is better to “overfill” the smaller community with type 1 (less risk
averse) agents as opposed to overfilling the larger community. For another way to look at this,
I plot the proportion of risk taken on by both groups as a risk pooling frontier in Figure 7. For
a demonstration that this is not an artifact of equal numbers of type 1 and type 2 agents, see
Appendix A.2.

3 Data and Context

3.1 Risk and Resilience in Ghana

The data comes from four villages in southern rural Ghana. These villages face significant covari-
ate risk, in particular from the pineapple export market (Conley and Udry, 2010).10 Risk manage-
ment within the villages includes substantial usage of these informal networks (Udry and Conley,
2005; Walker, 2011a). I utilize the 2009 network survey, which includes 631 individuals across the
four villages. The data also features information about assets, income, and consumption shocks

10Risk management is a key feature of these markets, where farmers use many strategies to manage risk. For
example, Suzuki et al. (2011) documents partial vertical integration in pineapple markets in Ghana, explaining it is a
strategy for smallholders to equip themselves to manage this risk through the use of local secondary markets.
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(Barrett, 2009; Walker, 2011a).11

3.2 Variable Construction

To test hypotheses about assortative matching in risk sharing networks and do welfare simu-
lations, I construct the data to match the theoretical model presented as closely as possible. In
particular, I construct risk preferences assuming constant absolute risk aversion preferences. To
construct risk pooling groups, I use community detection. The detected communities serve as
empirical analogues to the modeled risk pooling groups.

3.2.1 Risk Preferences

I use four hypothetical gambles to measure individuals’ risk aversion, which ask respondents to
choose between a sure payment YA and a risky gamble YB . These gambles are presented in both
the gains and losses domains, and with variation in the sure and variable payments. The first two
menus presented are in the gains domain. In the first menu, the risky gamble YB is held fixed
while the sure payment YA is increased. In the second menu, the sure payment is held fixed while
the upside of the risky gamble is reduced. The third and fourth menus reflect the first and second
set onto the losses domain.

To translate these hypothetical gambles into coefficients of risk aversion, I match assumptions
to the theoretical model. First, I assume YB is normally distributed and second that individuals
exhibit Constant Absolute Risk Aversion (CARA, or exponential preferences). These assumptions
allow for a mean-variance representation of expected utility, which is crucial for the later welfare
results (Sargent, 1987).12 I compute η̂i for each menu and individual using the sample analogue
of the expression:

ηi =
2(E(YB)− YA)

V (YB)
(15)

Finally, to combine these into measures of risk aversion, I average over menus. Precise details of
how each coefficient is computed are available in Appendix B.1.

Coefficients of Absolute Risk Aversion are plotted over the risk sharing network for one ex-
ample village in Figure 2. Additionally, the distribution of coefficients and definition of types is
plotted in Figure 9. Of those in the network who answered the elicitation module, I split these

11The survey instrument and further technical details can be found in Walker (2011b). A number of other empirical
studies document features of the networks in this setting: Vanderpuye-Orgle and Barrett (2009) studies socially
invisible members of the villages, and finds that risk pooling does not insure them as well as their richer, more
socially visible counterparts. Within households, Walker and Castilla (2013) finds spouses behave non-cooperatively,
hiding income through gifts to their networks. Finally, some transfers made within these networks may be altruistic
in motivation (Nourani et al., 2019).

12In particular, it allows for the comparison of average incomes to the variance in income.
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Table 1: Summary of Risk Sharing Network and Shocks by Risk Preferences

More Risk Averse Less Risk Averse Risk Loving
Panel A: Network Statistics

Average Degree 4.62 6.61 4.79
(0.02) (0.03) (0.06)

Prop. Isolates 0.09 0.09 0.16

Average Clustering 0.25 0.23 0.23
(0.00) (0.00) (0.00)

Average Betweenness 85.98 119.53 99.85
(0.69) (0.90) (2.56)

Panel B: Income Shocks
Average Net Losses 33.45 10.73 92.93

(278.83) (404.66) (404.64)

Prop. Net Gain 0.34 0.34 0.27

Prop. Net Loss 0.28 0.19 0.28
N 236 217 96
For averages, standard errors are reported in parentheses below. 82 individuals who did not participate
in the hypothetical gambles are excluded here. Risk loving have η̂i ≤ 0, less risk averse (type 1) have
0 < η̂i < ηsplit ≈ 0.003, and more risk averse (type 2) have η̂i ≥ ηsplit. Panel A: Degree is the number of other
nodes directly connected to a node, dj =

∑N
j=1 aij . Isolates are nodes with degree zero. Clustering is the

average local clustering coefficient, which answers the question: for individual i connected to j and k, what
proportion of the time are j and k also connected? Formally, clusteringi =

1
di(di−1)

∑N
j=1

∑N
k=1 aijajkaik .

Betweenness centrality is the sum of shortest paths between other nodes in the network on which that node
lies. Panel B: Shocks are unexpected losses or gains to income reported by the respondents summed up over
individuals. I omit one outlying value for the tabulation of mean and variance, a net loss of about 48,000
Ghanaian Cedis reported by a type 2 (more risk averse) household.

individuals into three groups: risk loving, less risk averse, and more risk averse. Risk loving are
those with ηi < 0. This accounts for about 20% of the individuals with preferences. I split the
remaining risk averse individuals into evenly sized groups of approximately 40% each, with more
risk averse individuals being above a cut-point, ηsplit ≈ 0.003.13

3.2.2 Risk Sharing Network

I will draw on graph theory to define and visually represent risk sharing networks. A graph g is
a set of nodes and an edgelist (which naturally contains edges). I refer to these nodes and edges

13It is difficult to split the remaining risk averse individuals into exactly even groups, and the less risk averse
group tends to be slightly larger in practice.
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by their subscripts. I subscript nodes by i. For edges, I use the combination of subscripts i and
j to refer to that edge: if there is a connection between i and j, I say ij ∈ g, hence ij is in the
edgelist. An adjacency matrix represents these nodes and edges in an n × n matrix A = A(g).
For the scope of this paper, I work with unweighted and undirected graphs, choosing to work
with reciprocal relationships. Thus aij = 1 if ij ∈ g and 0 if not. The adjacency matrix is also
symmetric: aij = aji for all i, j. The diagonal aii = 0 by construction.14

To construct the risk sharing network, I use the intersection of a gift network and a trust net-
work to form a network of strong ties. In essence, connected dyads in this network include both
one individual who recognized receiving a gift from the other and one individual who trusted the
other to hold on to a valuable item (these might possibly be the same individual). This combina-
tion was chosen to include those who are trusted in the future after gifts have been exchanged
in the past. However, I am cautious about gifts which are not reported due to issues of recall bias
(Comola and Fafchamps, 2017). For this reason, I do not force the trust and gift networks to be
individually reciprocal. Formally, aij = trustij × giftij where trustij = 1(i trusts j|j trusts i) and
giftij = 1(i received from j|j received from i). Future work might use a more expansive network
that intentionally includes weaker ties. With that said, the community networks presented in the
next section extend the radius of risk sharing to others who are not strong ties. For more detail
on network construction, see Appendix B.2.

Table 1 presents summary statistics about the risk sharing networks. When comparing less
and more risk averse individuals there are differences in both degree and betweenness central-
ity. In particular, less risk averse individuals have higher degree—more risk sharing connec-
tions. Likewise, they have higher betweenness centrality—holding positions which bridge be-
tween other nodes—suggesting their importance in the routing of gifts and transactions through
the network. This is both an unexpected and important feature of the data. Theory might pre-
dict that those with higher risk aversion would be central in risk sharing networks, reflecting a
demand for insurance and issues of moral hazard (Jaramillo et al., 2015). Furthermore, hetero-
geneity in degree by underlying type can confound estimates of assortative matching (Graham,
2017). Despite these differences, it’s interesting to note that the difference in clustering between
less and more risk averse individuals would appear to be economically small.15

14Nodes and edges go by many other names. In the case of risk sharing, nodes represent agents and edges
represent the social connections between those agents. I will use “agents” and “individuals” interchangeably when
referring to nodes in the network. Likewise, I will use “links” and “connections” interchangeably when referring to
edges. Dyads are not interchangeable, however: dyads are all possible combinations ij regardless of whether that
edge exists in the network.

15Though it is beyond the scope of the current work, one might interpret this as a difference in linking social
capital without an accompanying difference in bonding social capital. In terms of communities discussed later, this
might also suggest that less risk averse individuals might be more likely to serve as liaisons between risk pooling
communities.
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Figure 2: Risk sharing networks in village of Darmang with Constant Absolute Risk Aversion
coefficients indicated by color. For the distribution of risk preferences, see additionally Figure 9
which features a matching color coding.

I also include summary statistics about income shocks faced by individuals in the sample
in Table 1. While I caution against an entirely behavioral explanation for these shocks, some
interesting patterns emerge. First, the risk averse (both type 1 and type 2) seem to work to limit
their downside exposure relative to their upside exposure. Second, the variation in shocks among
the less risk averse and risk loving is larger than those for the more risk averse. Despite this, those
who are more risk averse face more downside risk than and have greater net losses those who
are less risk averse, an important reminder that exposure to shocks depends on circumstances
outside of risk preferences.
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3.2.3 Community Detection and Community Networks

While canonical work on risk sharing modeled it at the village level (or some similar adminis-
trative unit), empirical work has shown that sharing is mediated by interpersonal relationships
(Townsend, 1994; Fafchamps and Lund, 2003; De Weerdt and Dercon, 2006). Despite this, risk
may often be shared at a wider radius than one’s immediate friends and family. In many contexts
we can observe the radius of risk sharing via informal or quasi-formal risk pooling groups.16 To
match our empirical work to the theoretical model, it is handy to have such subvillage groups.
However, in this context, such groups are not legible. Community detection has recently emerged
to understand network structure on a meso to macro scale (Newman, 2012). Following Putman
(2022), I use community detection to break up village networks into meso-level risk pooling com-
munities.

Community detection aims to assign nodes to modular communities. In our case, a good com-
munity assignment is one where most risk sharing connections fall within the community with
only a few of the connections fall between communities. These risk sharing communities relate
closely to partitions of networks within which risk would be theoretically completely shared and
also explain behavior in a risk pooling experiment (Ambrus et al., 2014; Putman, 2022). More-
over, to the degree quasi-formal groups depend on group level rules (e.g. around repayment), they
may have a more interchangeable structure than personal relationships. This is also reflected in
the modular nature of the communities produced by these algorithms. Community detection
algorithms partition the network into non-overlapping groups of individuals, in contrast to the
overlapping networks of informal relationships.

My approach to uncovering communities is based on random walks through the network: A
random walker moves from node-to-node in the network by way of edges, randomly selecting the
next node it visits among those in the network neighborhood. In particular, I use the Walktrap
algorithm, which uses these random walks to determine the similarity between nodes by the
destinations of random walkers originating at that node (Pons and Latapy, 2005). The intuition
is that these random walks will become trapped in tightly knit sections of the local network,
meaning the algorithm will see nodes in tightly knit sections of the network as interchangeable
and therefore group them together. In the world of risk sharing, this interchangeability of nodes
is related to an interchangeability of risk sharing partners in the local network. Further discussion
of this algorithm for risk sharing networks can be found in Appendix B.3.

I assign individuals to risk pooling communities using Walktrap community detection on the
risk sharing network with walks of four steps.17 For a visualization of the resulting community

16Examples include mutual fire insurance in Andorra (Cabrales et al., 2003) and funeral societies in Ethiopia and
Tanzania (Dercon et al., 2006).

17Longer walks tend to result in larger communities relative to shorter walks. I opt for the default for four steps.
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(a) A stylized risk sharing network with (latent to
the econometrician) communities denoted by red
and blue.

(b) Community network: after detecting the com-
munities, community co-membership links are
added within and removed across communities.

(c) The difference in networks: community net-
work less the risk sharing network where green is
added and orange is removed. There is one addi-
tional connection within the red community and
one less between the red and blue communities.

Figure 3: A stylized example of risk sharing networks, community networks and their differences.

detection, see Figure 11. After I have assigned nodes to communities, I construct an additional risk
sharing network using these community assignments, which I refer to as the community network.
Assuming that effective risk pooling takes place at the community level, all nodes assigned to a
particular community are linked within the network. Since I assume no risk sharing takes place
between communities, in this network no links occur between communities.18 I represent the
community graph using an adjacency matrix C where cij is an indicator variable for if i and j are
in the same community. Like the adjacency matrix, C is symmetric. The difference in construction
of the bilateral risk sharing network and the community network is depicted in Figure 3.

4 Empirical Strategy

In this section I describe the two main econometric models of network formation I use to estimate
assortative matching on risk preferences. Each serves a different purpose within the paper. First,
dyadic regression serves as a reduced form approach to describe assortative matching in the data.
Its inclusion is beneficial as it allows for familiar exposition and interpretation as well as lending
itself more easily to tests of robustness and comparison with past literature.19 Second, SUGMs

18The theoretical results in Ambrus et al. (2014) suggest we would expect non-zero but small amounts of risk
sharing between islands—which might tend to form ex post within ex ante communities. Likewise, the empirical
results in Putman (2022) suggest very little risk sharing across communities.

19In particular, I note similarities and differences between these results and those found in Attanasio et al. (2012).
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serve to estimate assortative matching on risk preferences in a way that can be translated into
the composition of risk sharing groups as is specified in the theoretical model. The estimates of
these models will serve to inform the welfare results presented in Section 6.

4.1 Dyadic Regression

4.1.1 Risk Sharing Networks

To establish the degree of assortative matching on risk preferences, I will start by estimating
dyadic regressions, an econometric model of network formation. In these regressions, each pair
of nodes is treated as an observation. The most parsimonious model regresses risk sharing con-
nections on differences in measured risk aversion,

aij = β0 + β1|ηi − ηj|+ εij (16)

where aij is an indicator for if i and j are connected in the risk sharing network, ηi is the risk
aversion of individual i, and εij is the error term. Note that all variables enter symmetrically:
aij = aji (as the adjacency matrix A is symmetric) and explanatory variables are computed as
to enter symmetrically (Fafchamps and Gubert, 2007). A negative estimate of β1 is evidence of
assortative matching, i.e., that individuals prefer to share risk with individuals who have similar
risk preferences to their own.

A second specification includes the sum of risk aversion ηi and ηj to control for the correlation
between risk aversion and popularity, a difficult feature of the current cross-sectional setting.
Where one or both have low risk aversion, I would expect these agents to be more popular and
hence have a higher probability of forming a link.20 Whereas, in a panel setting, I might use a
fixed effects approach to account for degree heterogeneity, in this setting I rely on selection-on-

20There are three basic stories about what might cause risk preferences to be correlated with popularity. First,
risk preferences could be correlated with unobservable personality traits. For example, it could be that less risk
averse agents differ in personality traits not directly related to risk preferences. Second, economic decision-making
specifically involving risk might alter someone’s fortunes and thus their social standing. If those with lower risk
aversion make riskier, higher reward decisions, this may be parlayed into income growth and higher SES in the
long term (Elbers et al., 2007; Karlan et al., 2014). Third, though I have assumed constant absolute risk aversion, it
is plausible that having better social standing could make a person less risk averse e.g., in a model of decreasing
absolute risk aversion. A fourth issue is also at play: even when risk aversion is not correlated with popularity, as
outlined in Graham (2017), a person well connected to all types might be measured as not harboring a preference
for similar risk-preferenced others when in fact they do.
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observables.21 Specifically, I control for the sum of risk aversion:

aij = β0 + β1|ηi − ηj|+ β2(ηi + ηj) + εij (17)

A positive estimate of β2 suggests that individuals who are more risk averse are less likely to link
to each other. Furthermore, I take estimates of β1 using this strategy as my preferred estimate of
assortative matching from the dyadic regressions.

4.1.2 Heterogeneity by Family Ties

I examine how assortative matching varies by family ties. Family is interesting because it serves
as a longstanding relationship. This means there may be a higher propensity to link overall, but
also more information about potential risk sharing partners. We document the former in our
third specification:

aij = β0 + β1|ηi − ηj|+ β3Familyij + εij (18)

where family is an indicator variable equal to one if i and j report being kin. A positive estimate
of β3 suggests that family are more likely to be connected within the risk sharing network. A
fourth specification combines specifications (16) and (17) to add the ad hoc control.

aij = β0 + β1|ηi − ηj|+ β2(ηi + ηj) + β3Familyij + εij (19)

Finally, a fifth specification introduces interactions between the difference in coefficients of risk
aversion and family ties to understand this heterogeneity.

aij = β0 + β1|ηi − ηj|+ β2(ηi + ηj) + β3Familyij + β4Familyij × |ηi − ηj|+ εij (20)

A negative estimate of β4 is evidence that assortative matching is stronger among family mem-
bers. Moreover, if β1 + β4 is negative, this provides evidence that within family members, risk
aversion is an important determinant of risk sharing connections. This might suggest greater
information about others’ preferences driving matching, as in Attanasio et al. (2012).

4.1.3 Community Network

It is also interesting to see how assortative matching changes as we relax the radius of risk sharing.
While we do not have formal or quasi-formal risk sharing groups in this context sharing may take

21Notably, Graham (2017) introduces an approach to control for degree heterogeneity in cross sectional settings
which relies on combinations of data where fixed effect terms “net out” of the estimation, which I include as a
robustness check.

18



place in a larger group context as it does in the theoretical model. I use detected communities
to identify likely sharing partners who might lie beyond the immediate network neighborhood
(Putman, 2022). I re-estimate the above dyadic regressions with detected communities as the
network (as opposed to the network adjacency matrix). In all of the above specifications, I replace
aij with cij , the ijth entry of the community matrix C . cij = 1 if i ̸= j are in the same detected
community, and 0 otherwise.

The estimates of these models do not have as simple an interpretation as those for the risk
sharing network. If we treat detected communities as informal risk sharing groups (legible to par-
ticipants, but not to the econometrician), such a specification might accord with a coalition for-
mation game with simultaneous announcement like those in Hart and Kurz (1983).22 The dyadic
regression coefficients on the difference in risk aversion can be interpreted within this frame-
work as measures of assortative matching in the community network. After the groups have
been formed, these partners might be interchangeable for the purposes of idiosyncratic risk shar-
ing, and interchangeable conditional on risk preference for covariate risk sharing (similar to the
theoretical model).23

4.1.4 Estimation and Standard Errors

I estimate these dyadic regressions as linear probability models, though I estimate logistic re-
gressions as a robustness check (see Tables 9 and 10 in Appendix B.6.2). Importantly, errors are
non-independent in dyadic regressions. In particular, the residuals of dyads involving a par-
ticular node might be arbitrarily correlated.24 To correct standard errors for this type of non-
independence, I use dyadic robust standard errors (Fafchamps and Gubert, 2007; Cameron and
Miller, 2014; Tabord-Meehan, 2019).

4.2 Subgraph Generation Models

4.2.1 Intuition

A useful tool for understanding risk sharing networks and communities is called a Subgraph
Generation Model (SUGM). SUGMs treat networks as emergent properties of their constituent

22These models are not unlike those of pairwise stability found in Jackson and Wolinsky (1996). For example, in
one game, to form a coalition, all members of the coalition must announce the same list of names, meaning they can
exclude players by not including them in their list.

23There is more than one way to think about these estimates. In particular, we could think of these as a mix of
chosen and incidental (but nonetheless relevant) effective risk sharing partners, an interpretation closer to Ambrus
et al. (2014). For example, such incidental partners may be due to trusted community members (e.g., elders) who
coordinate risk sharing within their area of the local network. In such a case the parameters of the community
specifications would not be related to preferences for assortative matching.

24Formally, it may be the case that Cov(εij , εlk) ̸= 0 if i = l, i = k, j = l, or j = k.
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subgraphs.25 A subgraph (sometimes called an induced subgraph) of a graph is the graph ob-
tained from taking a subset of nodes in the graph and all edges connecting those nodes to each
other. For example, for a subset of two nodes in a graph, the subgraph will be either a link or
two unconnected nodes. For three nodes, the subgraph might be a triangle (a trio of nodes all
connected by edges), a line (one central node connected to the two others), a pair and an isolate
(two nodes connected and one unconnected), or an empty subgraph (three unconnected nodes).
I focus on connected subgraphs for the SUGM. In a three node example, this means I leave aside
pairs, isolates, and the empty subgraph, focusing on the triangle and the line. Likewise, while a
link is a subgraph of interest, two unconnected nodes is not.

4.2.2 Links and Isolates Subgraph Generation Model with Risk Preference Types

Like dyadic regression, SUGMs are estimated to understand how individuals of different risk
preferences connect to each other. However, for these estimates I build the SUGMs to estimate
the affinity within and between risk preference types. This allows me to recover community
composition in terms of risk preferences in order to assess the welfare implications of assortative
matching.26 I estimate SUGMs with both links and isolates, differentiated by types, which I base
on risk preferences. There are two models of interest: a baseline model and a preference model.
I start with the baseline model. For various reasons, a small subset of individuals in the network
did not participate in the survey module I use to recover risk preferences.27 Additionally, in the
model, I study risk sharing among only those who are risk averse. I term both those who were not
surveyed and those who have risk loving preferences as nuisance nodes. Therefore, to understand
the baseline rate of subgraph generation among the risk averse, I estimate a model with two types.
I estimate coefficients for five features: isolates of risk averse nodes, isolates of nuisance nodes,
links within nuisance nodes, and links between risk averse and nuisance nodes. I refer to the
second model to as the preference model. I estimate the full model with less risk averse, more
risk averse, risk loving, and non-surveyed types for a total of four types. This includes isolates of
each type, links within each type, and links between each pair of types for a total of 14 features.

I directly estimate the parameters using an algorithm given by Chandrasekhar and Lewis
(2016) and Chandrasekhar and Jackson (2021). Estimating a SUGM directly is essentially estimat-

25While Exponential Random Graph Models have a similar motivation, they do not succeed at reconstructing
graphs with any success. They depend on an assumption of independence of links. If this independence does not
hold they are not consistent (Chandrasekhar and Jackson, 2021). To the contrary, many studies of risk sharing would
expect links are dependent on each other. See for example Jackson et al. (2012).

26In the case of the community networks, I am actually recovering my estimate of assortative matching on risk
preferences from the composition of communities. In contract, in the risk sharing network it comes from the as-
sortative matching measure itself. This is because of the assumptions used in building the community network. To
better understand this point, it is helpful to relate the SUGM to a Stochastic Block Model, as I do in Appendix B.4.4.

27Some of these individuals were not surveyed at all, but appear in the network. Others may be part of the sample
who were not interviewed in that particular round or module.
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ing the relative frequency of various subgraphs in a network. However, I can’t stop at simply
estimating the features. Because networks are the union of many subgraphs, subgraphs might
overlap and incidentally generate new subgraphs. For example, three links placed between ij, jk,
and ik would incidentally generate a triangle. To estimate the true rate of subgraph generation, I
order subgraphs by the number of links involved in their construction. Then, I compute the num-
ber of subgraphs generated of that type, but only if they are not a portion of a larger subgraph
(that is, one composed of a greater number of nodes). For subgraphs of the same size, order is ar-
bitrary, but must exclude occurrences of this subgraph incidentally generated by other subgraphs
which are further along in the order. For example, for a SUGM featuring links and triangles, I
order links first, triangles second, etc. While counting links and potential links, I neglect pairs of
nodes ij if jk and ik are in the graph.28 More estimation details can be found in Appendix B.4.2.

4.2.3 Pooled Subgraph Generation Models

As my data has four unrelated networks, I need to make choices as to how to handle these multiple
networks in the SUGM. One approach would be to estimate a subgraph generation model for each
village and average the coefficients of these. A different strategy, and one that relies on the same
asymptotics as the single network case from Chandrasekhar and Jackson (2021), is to pool the
counts and potential counts from the villages to estimate a single coefficient across the villages.
This leads to an adjusted class of SUGMs I term Pooled SUGMs. To do so, I cannot simply combine
the networks and run the SUGM. For example, it is unlikely that the dyads that would occur
between villages would be reasonable potential dyads. Hence, I need to collect counts of features
and potential counts of features in all four villages before combining. Details of this modification
can be found in Appendix B.4.2.

4.2.4 Differences in Assortative Matching

These SUGM estimates give me a way to test for assortative matching between risk sharing net-
works and community networks. However, the risk sharing network and the community network
have different degrees of attachment. To make an apples to apples comparison, I normalize my re-
sults by taking the ratio of Preferences SUGM coefficients to Baseline SUGM coefficients. I focus
on the coefficients for within links for type 1 agents, within links for type 2 agents, and links be-
tween type 1 and 2 agents. For all three, I divide by the coefficient on links within any risk averse
agents from the baseline model. This yields an excess affinity for connections among these dyads.
Doing this for both the community coefficients and the risk sharing network coefficients, I can

28If I added lines of three nodes, I could order these before or after triangles. Ordering lines before triangles I
would look at potential links ij and jk where ik is not in the graph. Likewise, I would need to remove pairs of nodes
ij if jk or ik are in the graph.
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Table 2: Dyadic Regression: Bilateral Risk Sharing Network

Match Between i and j in Risk Sharing Network
(1) (2) (3) (4) (5)

|ηi − ηj| -0.00991 -0.0216∗∗ -0.00239 -0.0187∗∗ -0.0154∗
(-1.11) (-2.79) (-0.32) (-2.95) (-2.28)

ηi + ηj -0.0133 -0.0185∗∗ -0.0185∗∗
(-1.84) (-3.09) (-3.10)

Familyij 0.517∗∗∗ 0.518∗∗∗ 0.537∗∗∗
(32.22) (32.43) (29.21)

Familyij × |ηi − ηj| -0.0197∗
(-2.06)

Village FE Yes Yes Yes Yes Yes
Other Controls No No No No No
N dyads 71052 71052 71052 71052 71052
R2 0.0180 0.0193 0.2346 0.2371 0.2374
t statistics are reported in parentheses and are computed using dyadic robust standard errors. All specifica-
tions are dyadic linear probability models with matching in the risk sharing network as the dependent variable.
ηi is risk aversion of individual i, so |ηi−ηj | is the absolute difference of risk aversion while ηi+ηj is the sum.
Both absolute differences and sums of risk aversion are transformed into z-scores. ∗ p < 0.05, ∗∗ p < 0.01,
∗∗∗ p < 0.001

compare between the models. See appendix B.4.3 for details, including a conservative analytic
approximation of standard errors.

5 Results

5.1 Dyadic Regression

5.1.1 Risk Sharing Network

Table 2 reports the results from estimating the dyadic regression specifications. I include village
level fixed effects in all dyad regression specifications, though this does not affect the magnitudes
estimated. Reported t-statistics are computed using dyadic robust standard errors. To make re-
sults more interpretable, I transform risk preferences into z-scores before computing regressors,
so β1 estimates the effect of a one-standard deviation absolute difference in risk aversion.

Columns (2) and (5) present my preferred specifications. Across all specifications I see neg-
ative estimates for the effect of difference in absolute risk aversion on the likelihood of linking
in the risk sharing network. However, in columns (1) and (3), when the sum of risk aversion is
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omitted from the model, the estimates are small in magnitude and are not statistically significant
(at any standard confidence level). In contrast, proxying for degree with the sum of risk aver-
sion in column (2) yields a negative and significant estimate (at the 1% level), which I interpret
as evidence of assortative matching on risk preferences. In particular, I estimate a one standard
deviation difference in risk aversion leads a 2.16 percentage point reduction in the probability of
connection.

As in other contexts, family connections are a strong determinant of co-participation in the
risk sharing network. Across specifications (3), (4), and (5), having a family connection is posi-
tively associated with connection in the risk sharing network (statistically significant at the 0.1%
level). In column 5, family member dyads are 53.7 percentage points more likely to form a risk
sharing relationship than non-family members.

In columns (4) and (5), when I control for family connection and risk aversion, the estimate
of β1 falls. However, this may speak more to the mechanism of assortative matching. Simi-
lar to Attanasio et al. (2012), I would expect assortative matching on risk aversion to play a
stronger role for more socially proximate individuals who have more information about each
others preferences. In column 5, I have β̂1 + β̂4 = −0.0351, statistically significant at the 0.1%
level (χ2(1) = 13.68). Interpreting the coefficient, a one standard deviation difference in risk
aversion reduces the probability of linkage by 3.51 percentage points between family members.
This might suggest stronger assortative matching when more information about risk preferences
in available.

5.1.2 Community Network

Table 3 reports the results from re-estimating equations with the community network as the out-
come of interest. The estimates of β1 are negative and small in magnitude. None are statistically
significantly different than 0 at standard significance levels. Hence, I fail to find evidence for as-
sortative matching in the community network regressions. Heterogeneity by family connections
may provide some clues as to the differences. In particular, in column (5), β1 + β2 = −0.012 is
not significantly different than zero (χ2(1) = 1.36). This suggests individuals are less able to be
selective in their partnerships in the community network than in the risk sharing network.

5.1.3 Addressing Threats to Validity

Before moving on to the results of the Subgraph Generation Models–which echo the results pre-
sented above–it is useful to address threats to validity for the dyadic regression results presented
here. Qualitatively, the pattern of results in Tables 2 and 3 are highly robust to controlling for
demographic factors and network centrality. That is, I find assortative matching on risk prefer-
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Table 3: Dyadic Regression: Community Network

Match between i and j in Community Network
(1) (2) (3) (4) (5)

|ηi − ηj| -0.00668 -0.00651 -0.00343 -0.00525 -0.00379
(-1.38) (-1.20) (-0.79) (-1.05) (-0.75)

ηi + ηj 0.000189 -0.00207 -0.00206
(0.04) (-0.53) (-0.53)

Familyij 0.224∗∗∗ 0.224∗∗∗ 0.232∗∗∗
(13.56) (13.55) (11.71)

Familyij × |ηi − ηj| -0.00882
(-0.84)

Village FE Yes Yes Yes Yes Yes
Other Controls No No No No No
N dyads 71052 71052 71052 71052 71052
R2 0.0125 0.0125 0.0997 0.0998 0.0999
t statistics are reported in parentheses and are computed using dyadic robust standard errors. All specifica-
tions are dyadic linear probability models with matching in the community network as the dependent vari-
able. ηi is risk aversion of individual i, so |ηi − ηj | is the absolute difference of risk aversion while ηi + ηj is
the sum. Both absolute differences and sums of risk aversion are transformed into z-scores.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

ences when controlling for the sum of risk aversions, and this assortative matching attenuates in
community networks. See Appendix B.6.1 for detailed results using this selection-on-observables
approach for the linear probability model. Likewise, results are robust to choice of specification.
Appendix B.6.2 presents results from dyadic logistic regression, which similarly echo those from
the linear probability models.

To be sure I can justify using sum of risk aversion as an ad hoc control for popularity, I utilize
a network formation model termed tetrad logit, which is designed to account for correlations be-
tween heterogeneity in degree and type when estimating assortative matching (Graham, 2017).
Intuitively, this method selects tetrads of nodes (sets of four nodes and their connections) which
contribute to the estimate only if the node fixed effects for degree “drop out” within that tetrad,
thereby “netting out” heterogeneity in popularity. This allows for estimates of assortative match-
ing unconfounded by popularity. I estimate models for each village network which lead to three
insights. First, results unconditional on the sum of risk aversion from tetrad logit are similar to
those from other methods (e.g., logit) when conditioning on the sum of risk aversion. Second,
after accounting for popularity with tetrad logit, controlling for the sum of risk aversion does
not substantially change estimates. Third, assortative matching also attenuates in community
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Table 4: Links and Isolates Pooled Subgraph Generation Model: Coefficients of Interest from
Baseline and Preferences Models and Coefficient Ratios.

Risk Sharing Network Community Network
Model, Subgraph Stat. Std. Err. Stat. Std. Err.
Baseline SUGM Coef.
Within: All Risk Averse 0.0404 0.0009 0.0928 0.0013

Preferences SUGM Coef.
Within: Less risk averse 0.0561 0.0010 0.1189 0.0015
Within: More risk averse 0.0299 0.0008 0.0713 0.0012
Between: More, less risk averse 0.0360 0.0008 0.0876 0.0013

Ratio of Coefs: Pref./Baseline
Within: Less risk averse 1.389 0.040 1.281 0.024
Within: More risk averse 0.740 0.026 0.768 0.017
Between: Less, more risk averse 0.891 0.028 0.944 0.019

Sample size for features of interest is 49536 dyads. Models are abridged, focusing on coefficients and ratios of
interest. For full results, Baseline SUGM coefficients are presented in Tables 13 and 14 and preference SUGM
Coefficients are presented in Tables 15 and 16 Coefficient ratios are used to compare the two models, since
higher average degree (as is present the community network) will result in higher coefficient estimates. SEs
for coefficients are computed as shown in Appendix B.4.2 and SEs for ratios are computed as shown in Ap-
pendix B.4.3.

networks using this estimator. These results give me confidence that the sum of risk aversion is
controlling for a nuisance correlation between risk aversion and popularity. I describe the tetrad
logit estimator in greater detail and present results in Appendix B.6.3.

5.2 Subgraph Generation Models with Types

The SUGM results for the coefficients of interest are presented in Table 4. While these are abridged
for clarity, full results of all SUGM models are available in Appendix B.6.4. Using the baseline
model, I estimate that individuals who are risk averse tend to form links with each other at a rate
of 4.04%. The network arising from community detection tends to be denser than the risk sharing
network: I estimate that individuals who are surveyed about preferences tend to form links with
each other at a rate of 9.28%, more than twice the rate in the risk sharing network.

Considering the coefficients of interest from the preferences model, I derive two main find-
ings. First, I see further evidence of assortative matching on risk preference by less risk averse
individuals. Less risk averse agents form within-type links at a rate of 5.61% (compared to the
base rate of 4.04%). Second, I do not see the same kind of assortative matching when looking at
more risk averse individuals: I estimate more risk averse individuals form within-type links at a
rate of 2.99%, lower than both the base rate and the rate at which less and more risk averse indi-
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(a) No Assortative Matching: optimal composi-
tion of risk pooling communities. β̃C

L,1,2 = 0.5

and pU = 0.5.

(b) Some assortative matching in a risk sharing
network. β̃C

L,1,2 = 0.3125 and pU = 0.8061.

(c) Some assortative matching: a subopti-
mal composition of risk pooling communities.
β̃C
L,1,2 = 0.375 and pU = 0.75.

(d) Complete Assortative Matching: a worst
case composition of risk pooling communities.
β̃C
L,1,2 = 0 and pU = 1.

Figure 4: Stylized scenarios. Yellow is more risk averse, teal is less risk averse.

viduals form links between type (3.60%). In this way, less risk averse individuals drive assortative
matching. In contrast, more risk averse types are more likely to form between links than within
links.

The assortative matching in the community network mirrors the pattern in the risk sharing
network (see Table 4). First, it is driven by less risk averse individuals who form within links at
a rate of 11.89%. Second, links between low and high risk aversion individuals form at a higher
rate (8.76%) than links within high risk individuals (7.13%).

The degree of assortative matching falls in the community network vis a vis the risk sharing
network when we correct for the average number of links between individuals in the network.
Restults measuring the degree of assortative matching as the ratio of the rate of between links
to the rate of links between all risk averse individuals are also presented in Table 4. The ratio
of within types for less risk averse individuals is higher in the risk sharing network, whereas
the ratio of between types is lower. Essentially, this indicates a reduced degree of assortative
matching in the effective risk sharing communities.

6 Welfare Implications of Assortative Matching

What are the welfare implications of the degree of assortative matching? To quantify this effect, I
compare among four scenarios. I list these scenarios, which are visualized in Figure 4, from high
to low in terms of aggregate welfare:
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(a) Optimal scenario: The planner’s optimum with equal numbers of types. This scenario fea-
tures no assortative matching.

(b) Community scenario: takes the degree of assortative matching implied by community net-
work SUGM estimates. Features some assortative matching.

(c) Bilateral scenario: takes the degree of assortative matching implied by risk sharing network
SUGM estimates. This features slightly more assortative matching than in the community
scenario.

(d) Worst case scenario: complete assortative matching.

Using the results from our SUGMs I am able to construct implied membership of communi-
ties. In the special case of communities, where all community members form a clique, I am able
to directly estimate the ratio of SUGM coefficients using only the number of each type in the
community. This is useful because it can give us an analytic expression of the average proportion
of the majority type in each community as a function of the SUGM coefficients. By construction,
the majority type will be type 1 in about half of the communities, and type 2 in the other half. Us-
ing simplifying assumptions (covered in detail in Appendix B.5), I am able to express the average
proportion of the majority type, pU (“p upper”):

pU = 0.5 + 0.5×

√√√√1−
(
N −G

N − 1

)(
β̃L,1,2

β̃ra

)
(21)

Once I obtain pU for a scenario, it becomes the basis for a simulation of communities.
To examine these counterfactual scenarios, I use a simulation approach. Each simulation

proceeds as follows: first, I sort detected communities into two equally sized groups. The first of
these is majority type 1 and the second is majority type 2. Second, I randomly assign individuals
to communities using a binomial process, varying the probability of assignment by scenario.
Specifically, I simulate community membership as Ng (community size) draws from a binomial
distribution with p̄U probability of success—success being defined as a type 1 agent or a type 2
agent, depending on which should be the majority type. Third, I compute the value functions for
these random assignments using the derived value functions. For details of the simulations, see
Appendix B.5.

I simulate community membership 50, 000 times, compute the value functions, and plot the
results in Figure 5. The results are as follows:

(a) With no assortative matching, the optimal scenario has type 1 and type 2 agents each cho-
sen at 0.5. The average loss is −136.76PPP
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Table 5: Differences in Average Losses from Risk per Capita.

…less Scenario
Scenario… (b) Community (c) Bilateral (d) Worst Case
(a) Optimal 4.60 5.37 19.66

(b) Community 0.76 15.06

(c) Bilateral 14.29
Results are averages from 50,000 simulation draws. Each entry in the table is the average
per capita welfare from the scenario in the column less the average per capita welfare in
the scenario in the row. Differences are in PPP Dollars.

(b) The community scenario has some assortative matching, as R1,2 = 0.944. I compute pU =

0.754. The average loss due to risk is −141.38PPP.

(c) The bilateral scenario has slightly more assortative matching, as R1,2 = 0.944. I compute
pU = 0.774. The average loss due to risk is −142.13PPP in this scenario.

(d) Finally, in the worst case scenario, there is complete assortative matching, so communities
chosen as type 1 majority are completely type 1 and communities chosen as type 2 are
completely type 2. The average loss due to risk is −156.43PPP.

The average differences in scenarios are presented in Table 5. Due to relatively similar degrees
of assortative matching in the bilateral and the community scenario as estimated by the SUGM,
I see relatively similar degrees of welfare. However, given larger differences in the degree of as-
sortative matching, there could be potentially be large reductions in welfare. These are bounded,
holding community size and risk aversion constant, by the worst case scenario. These results
are also influenced by the size of the measured coefficients of risk aversion, for which the upper
bound binds. For more, Appendix A.3 discusses the impact of varying measured risk aversion on
the welfare impact of assortative matching in theory.

7 Conclusion

7.1 Summary

In this paper, I explore assortative matching on risk preferences as a barrier to covariate risk
sharing. I characterize optimal covariate risk sharing with heterogeneous types in subvillage
communities and test if observed networks set the table for this type of risk sharing. I construct
a model of covariate risk sharing with heterogeneous risk preferences. In this model, agents
benefit from connecting to other agents who have risk preferences unlike their own. I find that
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with less and more risk averse types, the optimal allocation of types to communities reflects
the population distribution of types. That is, each community should have roughly the same
proportion of more and less risk averse types as the village. This optimal allocation of types to
communities corresponds to a case of no assortative matching.

Using data on risk sharing, I estimate that individuals tend to match with those people who
have similar degree of risk aversion. This tends to be driven by links within kinship networks.
Furthermore, this assortative matching is driven by within links of low risk aversion types. In
essence, low risk aversion types have both higher degree overall and a preference to link to their
own type. When looking at the community network, which bounds the radius of risk pooling,
I see a reduction in assortative matching. While estimates vary, the magnitude of assortative
matching falls in the community network.

Taking seriously the theoretical model of covariate risk sharing, I simulate welfare outcomes
and find that the magnitude of assortative matching is small from the perspective of ex ante
economic welfare. While I find large reductions in ex ante welfare due to covariate risk, the losses
due to assortative matching are small when compared to the losses due to the relatively small size
of risk pooling communities. I estimate that on average $141.38 PPP is lost due to covariate risk
relative to a case where this could be fully insured. The optimal scenario averts only $19.66 PPP of
these losses relative to the worst case scenario. Additionally, risk pooling networks are relatively
close to optimal when community size is held constant. I estimate the optimal scenario would
avert only $4.60 PPP over the same period when compared to the actual distribution of types to
communities.

7.2 Limitations

I face some limitations in the estimation of the network formation models and the welfare sim-
ulations. First, while the results measure assortative matching on risk preferences in equilib-
rium, there is not an obvious causal interpretation for the coefficients. In particular, even if the
selection-on-observables approach manages omitted variable bias (particularly due to popular-
ity), the reflection problem applies to network formation just as it does peer effects (Manski, 1993).
Do people match with those who have similar risk preferences, do they have similar risk pref-
erences because they match, or do they have similar risk preferences because they face similar
environments? While the preferred interpretation of a model of network formation would be the
former, other stories remain plausible.29

Second, coefficients of risk aversion are censored by the survey instrument. In this data, about
25% of individuals who are surveyed about their preferences choose the most risk averse options

29See, for example Lucks et al. (2020), where randomly matched adolescents align risky choices with their match,
suggesting peer effects.
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Figure 5: Histogram plots of welfare losses due to risk from 50,000 simulations. Scenario means
are denoted by vertical black lines.

available on all questions. Thus, we should be cognizant that at least some of these respondents
have their degree of risk aversion underestimated. Moreover, this is meaningful within the the-
oretical model. In particular, the greater the degree of risk aversion, the greater the losses for
a given level of assortative matching on risk preferences. Figure 8 in the Appendix depicts this
point. Based on this line of reasoning, it is very plausible that this approach underestimates the
losses due to assortative matching.

Third, and finally, the story about assortative matching is incomplete. Importantly, I do not
model endogenous network formation theoretically. I discuss this issue in detail below. Addition-
ally, though perhaps less pressing, there is the omission of assortivity in the adoption of formal
financial products. It is quite plausible that assortivity on other dimensions including savings or
access to credit could similarly impact one’s ability to share covariate risk. Where risk aversion
correlates with these other factors, this would similarly place assortative matching as a barrier
to risk sharing.

7.3 Discussion and Future Work

How can we square the empirical results on assortative matching with the theory above? Does
the failure to achieve no assortative matching suggest that individuals are failing to maximize
utility? I would not go so far. In particular, the model presented here abstracts away from issues of
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asymmetric information that tend to plague idiosyncratic risk sharing. Models where agents can
take risky actions might provide an incentive for this type of assortative matching. Indeed, this
logic is reflected in theoretical models where asymmetric information over risky actions drives
assortative matching when there is heterogeneity in preferences (Attanasio et al., 2012; Wang,
2015). Similarly, where risk endowments differ, these serve as a driver of assortative matching
(Jaramillo et al., 2015; Gao and Moon, 2016). Finally, where shocks are autocorrelated, we may
find assortative matching on this dimension (Xing, 2020). This suggests that future avenues may
need to balance the apparent substitution between idiosyncratic and covariate risk sharing.

Beyond exploring substitution between forms of risk sharing, the results here may also reflect
a multiplexity trap, where risk sharing networks are influenced by other, seemingly unrelated
networks (Cheng et al., 2021). For example, risk sharing networks might formed in dyads among
co-workers. Such a story would lead to similarly preferenced individuals joining the same risk
pools as we seen in our empirical exercise. In such a setting, while endogenous choice is exercised
in forming relationships, this choice is both path dependent and may lead to lower utility than if
each network were formed independently.

A final point, and one avenue for future exploration arises from a problem of the empirical
setting: less risk averse agents tend to be more popular in risk sharing networks than their more
risk averse peers. While this issue has not been rigorously modeled, intuition might suggest the
opposite.30 For example, if we consider risk sharing as a coping strategy for those excluded from
formal risk management tools, we would expect (and possibly hope) that those who are more risk
averse would demand more insurance and thus find themselves more deeply embedded in these
risk sharing networks. To the contrary, more risk averse agents tend to find themselves distant
from the center of networks, with fewer connections. This feature of network formation yields a
puzzle and a problem for future research.

30Some related work has been done. For example, the theoretical model in Jaramillo et al. (2015), which focuses
on heterogeneity in risky endowments, relates demand to network structure. They find that those who face the least
risk will be accepted by any risk sharing group.
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A Theoretical Appendix

A.1 Risk Sharing in Communities

A.1.1 Focus on Risk Averse Individuals

As presented in Section 3, about 20% of the individuals in the sample are measured as having risk
loving preferences. Close readers might reason that these individuals would take on covariate
risk from others and would also appreciate the cash to do so. However, I do not model them as
so, instead focusing on risk averse individuals. I do this for several reasons, not all of which are
explicitly modeled. First, in this model idiosyncratic and covariate risk sharing are a “package
deal.” That is, to be in the covariate risk sharing arrangement, one must also be in the idiosyncratic
risk sharing arrangement. This would serve as a disincentive for these risk loving individuals.
Indeed, these individuals are more likely to be isolates in the risk sharing networks (see Table 1).

Second, while the formal model abstracts away from heterogeneity in income variance and
downside risk, risk loving individuals’ preferences would suggest they would take on more risk
(or different kinds of risk, e.g., downside risk). Indeed, we see that risk loving individuals tend to
have high income risk (though similar in variance to others who are less risk averse), have greater
average losses from risk, and a greater ratio of net losses to net gains (see Table 1). While we do
not model heterogeneity in income variance, others do. They find that high risk individuals are
included only by those with similar risk profiles: see, for example Jaramillo et al. (2015).

A.1.2 Expected Utility

Because shocks are normally distributed, expected utility for both types is equivalent to maxi-
mizing the mean-variance representation as seen in Sargent (1987).

E(Uℓ(cℓi)) = E(cℓi)−
ηℓi
2
V ar(cℓi)

Also note CARA utility function increases in consumption. Thus, the agent consumes all income
and transfers available in all states of the world. Expected consumption for type 1 is E(c1i) = λ1i

and for type 2, E(c2i) = λ2i. Variance for the two types can be computed:

V ar(c1i) =

(
θ

p

)2(
σ2

N
+ ν2

)
and V ar(c2i) =

(
1− θ

1− p

)2(
σ2

N
+ ν2

)
.

So then I write expected utility

E(Uℓ(c1i)) = λ1i −
η1i
2

(
θ

p

)2(
σ2

N
+ ν2

)
and E(Uℓ(c2i)) = λ2i −

η2i
2

(
1− θ

1− p

)2(
σ2

N
+ ν2

)
.
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For ease of notation, I define σ2
c = σ2

N
+ν2 and note that the utility of the more risk averse agents

when only idiosyncratic risk is pooled is equal to EU0 = −η2i
2
σ2
c .

A.1.3 Feasibility of Risk Sharing

Due to constraints 3, 4 and 5, budget constraints bind at the community level. To see this, I sum
up the two types using weights:

pc1i + (1− p)c2i ≤ θ

(
1

N

N∑
i=1

ỹi + ỹv

)
+ pλ1 + (1− θ)

(
1

N

N∑
i=1

ỹi + ỹv

)
+ (1− p)λ2

N1c1i +N2c2i ≤
N∑
i=1

ỹi +Nỹv.

Hence total consumption shocks to types 1 and 2 are bounded by total income shocks and informal
insurance is feasible.

A.1.4 Solving the Lagrangian

I construct the Lagrangian retaining constraints 2 and 5 (with a2 and a3 as multipliers, respec-
tively) and incorporate the consumption constraints into expected utlity.

L = λ1 −
η1
2

θ2

p2
σ2
c + a

(
λ2 −

η2
2

(1− θ)2

(1− p)2
σ2
c +

η2
2
σ2
c

)
+ b (pλ1 + (1− p)λ2)

The first order conditions are as follows:

∂L
∂λ1

= 1 + bp = 0 (22)

∂L
∂λ2

= a+ b(1− p) = 0 (23)

∂L
∂θ

=
−η1θσ

2
c

p2
+ a2

(
η2(1− θ)σ2

c

(1− p)2

)
(24)

∂L
∂a

= λ2 −
η2
2

(
1− θ

1− p

)2

σ2
c +

η2
2
σ2
c = 0 (25)

∂L
∂b

=pλ1 + (1− p)λ2 = 0 (26)
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Using FOC 22 I note that b = −1
p
. Likewise, using FOC 23 I note that a = 1−p

p
. Rearranging FOC

25, FOC 26, and substituting :

λ2 = −η2
2

(
1−

(
1− θ

1− p

)2
)

⇒ λ1 = −
(
1− p

p

)
λ2 =

(
1− p

p

)
η2
2

(
1−

(
1− θ

1− p

)2
)

Finally, I simplify FOC 24 to find θ:

η1θσ
2
c

p2
=

1− p

p

(
η1(1− θ)σ2

c

(1− p)2

)
⇒
(
η1
η2

)(
1− p

p

)
=

1− θ

θ

⇒ 1

θ
=

(
η1
η2

)(
1− p

p

)
+ 1 ⇒ θ =

pη2
(1− p)η1 + pη2

.

Covariate risk will not be taken on fully by the less risk averse agents. θ = 1 only if either η1 = 0

(type 1 is risk neutral, which we’ve assumed is not true) or p = 1. Note

(1− θ)2 =

(
1− pη2

(1− p)η1 + pη2

)2

=

(
1− (1− p)η1

(1− p)η1 + pη2

)2

=
(1− p)2η21

((1− p)η1 + pη2)2
.

So then we can express the payment between type 1 and type 2 agents:

λ2 = −η2
2

(
1− η21

((1− p)η1 + pη2)2

)
.

A.1.5 The Rate of Risk Pooling

One result of the theoretical model is that the proportion of risk taken on by less risk averse
individuals in a community in equilibrium is greater than their proportion of the community. To
see this, note that since η1 < η2 by assumption pη2 + (1− p)η1 < pη2 + (1− p)η2 = η2. Thus,

θ∗(p, η1, η2) =
pη2

pη2 + (1− p)η1
>

pη2
η2

= p.

A.1.6 Value Functions

I compute the value functions for type 1 and type 2 individuals.

V1(p, η1, η2) = E(U1(c1i)|θ∗(p), λ∗
1(p)) = λ∗

1(p)−
η1
2

(
θ∗(p)

p

)2

σ2
c

= λ∗
1(p)−

η1
2

(
pη2

((1− p)η1 + pη2)p

)2

σ2
c = λ∗

1 −
η1
2

(
η2

((1− p)η1 + pη2)

)
σ2
c
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V1(p, η1, η2) =
η2
2

(
1− p

p

)(
1−

(
η1

(1− p)η1 + pη2

)2
)

− η1
2

(
η2

(1− p)η1 + pη2

)2

σ2
c

V2(p, η1, η2) = E(U2(c2i)|θ∗(p), λ∗
2(p))

= λ∗
2(p)−

η2
2

(
1− θ∗(p)

1− p

)2

= λ∗
2(p)−

η2
2

(
1− pη2

(1−p)η1+pη2

1− p

)2

σ2
c

= λ∗
2(p)−

η2
2

(
(1− p)η1 + pη2 − pη2

(1− p)((1− p)η1 + pη2)

)2

σ2
c

= λ∗
2(p)−

η2
2

(
(1− p)η1

(1− p)((1− p)η1 + pη2)

)2

σ2
c

= λ∗
2(p)−

η2
2

(
η1

(1− p)η1 + pη2

)2

σ2
c

= − η2
2

(
1− η21

((1− p)η1 + pη2)2

)
− η2

2

(
η1

(1− p)η1 + pη2

)2

σ2
c

V2(p, η1, η2) = − η2
2

(
1 +

(
η1

(1− p)η1 + pη2

)2 (
σ2
c − 1

))

A.2 Optimal Assignment and Village Composition

Optimal composition of communities occurs when the proportion of individuals within the com-
munity is equal to that in the village. As a demonstration is not an artifact of equal sized com-
munities, I vary the composition of types in the population in Figure 6. In this figure, welfare is
maximized when pA1 = p1, the proportion of type 1 agents in the population.

In addition, it is interesting to understand what proportion of covariate risk is shared in each
community as a planner sorts types into two communities. Figure 7 demonstrates how the pro-
portion of risk sharing in larger and smaller communities varies by composition. As type 1 in-
dividuals move from the larger community to the smaller community, a greater proportion of
covariate risk, encapsulated by θ is taken on by these individuals within the smaller community.
This results in a risk management frontier which is bowed out. When more risk neutral agents
are all in the larger or smaller community, they come close to taking on all of the covariate risk.
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Figure 6: Optimal Allocation of Types Between Unequally Size Communities with varying num-
bers of type 1 and type 2 agents.
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Figure 7: A Risk Management Frontier: Proportion of Covariate Risk Taken on by Less Risk
Averse Agents in Communities. From top left to bottom right, type 1 agents move from the
larger community to the smaller one.
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A.3 TheWelfare Implications of Risk Preferences

I measure risk aversion using hypothetical gambles. Though these gambles return those who are
more and less risk averse, it is likely that the relatively low stakes of the hypothetical gamble
may yield coefficients of risk aversion much lower than we might observe with a high stakes
incentivized gamble. Moreover, if risk aversion is underestimated, then the welfare impact of
risk sharing will also be underestimated. Even within the local range of risk aversion measured,
we can see non-trivial differences in losses due to risk. For example, Figure 8 shows how losses
due to observed assortative matching increase with risk aversion of more risk averse agents.
Furthermore, see Figure 9 which shows a mass of top-coded coefficients of risk aversion.
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Figure 8: Greater risk aversion increases the welfare impact of assortative matching. As risk
aversion increases villages with greater assortative matching will suffer more than those without.
However, the delta between degrees of assortative matching is subject to diminishing marginal
losses. The dashed vertical line indicates the measured degree of risk aversion among type 2
agents.

40



Risk Loving Type 1: Risk Averse Type 2: Risk Averse

0

200

400

600

−0.0050 −0.0025 0.0000 0.0025
Coef. of Absolute Risk Aversion

D
en

si
ty

Figure 9: Histogram and distribution of risk preferences within the four villages. The histogram
fill, which depicts the measured degree of risk aversion from the hypothetical gambles, is matched
with Figures 2 and 10. Vertical lines indicate distinctions between types, which are annotated on
the x-axis.
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B Empirical Appendix

B.1 Measuring Risk Preferences

For each gamble, let YA be constant and let YB be normally distributed. For an agent with CARA
preferences, I represent expected utility as a mean variance utility function (Sargent, 1987).

EUi(Y ) = E(Y )− ηi
2
V (Y ) (27)

Respondents are able to choose between two gambles YA and YB , and will be indifferent between
the two when

E(YB)−
ηi
2
V (YB) = YA.

If an individual reaches a point of indifference between two gambles, I assign them to the midpoint
between the two gambles. Hence, if the mean differs, I take the average of the mean of the
two gambles and assign this value to the point of indifference. If the variance differs, I take the
average of variances and assign this value to the point of indifference. The second two menus are
reflections of the first two onto the domain of losses. Then we can express risk aversion for agent
i as a function of their indifference point,

ηi =
2(E(YB)− YA)

V (YB)

and recover the coefficient of absolute risk aversion.

Table 6: Hypothetical Gamble Questionnaires

First Questionnaire
Prob. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

yA 100% 85 90 95 100 105 110 115 120 125 130 135

yB
50% 20 20 20 20 20 20 20 20 20 20 20
50% 200 200 200 200 200 200 200 200 200 200 200

Second Questionnaire
Prob. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

yA 100% 80 80 80 80 80 80 80 80 80

yB
50% 40 40 40 40 40 40 40 40 40
50% 130 125 120 115 110 135 140 145 150

Each set of questions was asked in the domain of gains and the domain of losses, for a total of four sets of
questions. Amounts are in Ghanaian Cedis (about 0.54 GHC/$PPP, so 200 GHC would be around $370 PPP in
2009). The script proceeded from midpoint gamble (Q6 in the first questionnaire and Q5 in the second) to the
direction implied. For example, choosing A in Questionnaire 1 Q6 would direct you to Q5, which lowers the
sure value of A. The elicitation ends on the question where the respondent switches from their choice.
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Amounts for each hypothetical gamble are presented in Table 6. The choice between gambles
is framed around choice to purchase agricultural inputs. In the gains domain, the gambles are
framed around fertilizer and in the losses domain, they are framed around insecticide. While the
gambles themselves are not normally distributed, yB − E(yB) is both distributed symmetrically
around zero and relatively small compared to incomes.

B.2 Risk Sharing Networks

To construct the gifts network, I use the responses to the question, “Have you ever received a gift
(of money, goods, or services) from this person?” In particular, a link occurs in the gift network if
i reports receiving a gift from j or j reports receiving a gift from i. To construct the trust network,
I report a link if either i and j respond yes to the question “Would you trust this person to look
after a valuable item for you?” If a connection occurs in both networks, I record a connection
between i and j and use this as my risk sharing network. Future work might utilize the method
described in Comola and Fafchamps (2014) to determine how to construct the gifts network. In
particular, this approach would draw one additional question from the survey, “Have you ever
given a gift (of money, goods, or services) to this person?”

For the family network, I use the relationship codes collected to identify close family. In this
definition, family includes spouses, children, step-children, parents, grandparents, and grandchil-
dren. These relationships are lineal and marriage related ties as opposed to collateral ties. Future
work might also include some collateral ties such as siblings. The family network is not used to
construct the risk sharing network.

B.3 Community Detection

B.3.1 Walktrap Algorithm

At a high level, the Walktrap algorithm proceeds as follows (Pons and Latapy, 2005):

1. To start, each node is assigned to its own community. Compute distances for all adjacent
communities. See Appendix B.3.2 for a description of the computation of distances.

2. Merge the two adjacent communities with the smallest distance into one community.

3. Recompute the distances between communities.

4. Repeat steps 2 and 3 until all communities have been merged into one, recording the order
of merges in a dendrogram (a hierarchical diagram documenting community merges).
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5. Using the dendrogram, compare the modularity of all possible community assignments and
choose the one with the highest modularity. See Appendix B.3.3. for the computation of
modularity.

B.3.2 Computing Distances using RandomWalks

The Walktrap algorithm uses random walks to compute node similarity (Pons and Latapy, 2005).
A random walk proceeds as follows: A random walker starts at node i and moves to an adjacent
node with probability 1/di (where di is the degree of i). This process is repeated from the landing
node, k, moving to an adjacent node with probability 1/dk, a total number of s times. If nodes
are in the same community, random walks of length s from nodes i and j should often land on
the same nodes. Of course, nodes with higher degree will more often receive these walks, so the
measure of distance takes account of the degree of receivers.

rij(s) =

√√√√ n∑
k=1

(P s
ik − P s

jk)
2

dk
. (28)

where P s
ik is the probability that a walk starting at node i ends its walk on node k. The distance

overall can be thought of as the L2 distance between P s
ik and P s

jk.
Building on this definition, the authors also define the distance between communities:

rC1,C2(s) =

√√√√ n∑
k=1

(P s
C1,k

− P s
C2,k

)2

dk
. (29)

where the source of the random walk is drawn randomly and uniformly from members of that
community: P s

C,k =
1
|C|
∑

i∈C P s
ik.

B.3.3 Modularity

Modularity measures the internal quality of the community by looking at how many links exist
within the community compared to how many would be expected at random (Newman, 2012).
The measure follows from a thought experiment: suppose you were to take a graph and ran-
domly “rewire” it. This rewiring preserves the degree of individual nodes, while destroying the
community structure. The average number of within community links from rewiring is used as a
counterfactual. Having many more links within the community than the counterfactual implies
a good community detection. Fewer implies a poor community structure.

To compute modularity, let di and dj be the degrees of nodes i and j respectively. Let m be the
number of edges in the graph. The expected number of edges between i and j from this rewiring
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is equal to didj/(2m− 1) ≈ didj/2m. 2m since each link has two “stubs,” so to speak. I can then
compare this expected number of links between i and j to the actual connections: letting Aij be
the ijth entry of the matrix, I take the difference these two numbers Aij− didj

2m
. I can interpret this

as connections over expected connections in a random graph conditional on node pair degrees.
Then, these values are weighted by if they reside in the same community, i.e., if cij = 1. Finally,
I aggregate to the graph level and normalize by twice the number of links present:

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
cij

This serves as an easily computable and straightforward measure of the internal quality of com-
munities.

B.4 Subgraph Generation Models

B.4.1 Estimation

For each model, I estimate β̃ =
(
{β̃I,ℓ}∀ℓ, {β̃L,ℓ,ℓ}∀ℓ, {β̃L,ℓ,r}∀ℓ,∀r

)
. β̃I,ℓ is the coefficient for iso-

lates of type ℓ, β̃L,ℓ,ℓ is the coefficient for within links of type ℓ, and β̃L,ℓ,r is the coefficient for
links between type ℓ and r. Coefficients are estimated,

β̃I,ℓ =

∑n
i=1 1(deg(i) = 0|li = ℓ)

nℓ

(30)

β̃L,ℓ,ℓ =

∑n−1
i=1

∑n
j=i+1 aij × 1(li = ℓ)× 1(lj = ℓ)∑n−1

i=1

∑n
j=i+1 1(li = ℓ)× 1(lj = ℓ)

(31)

β̃L,l,r =

∑n−1
i=1

∑n
j=i+1 aij × (1(ℓi = l)× 1(ℓj = r) + 1(ℓi = t)× 1(ℓj = l))∑n−1

i=1

∑n
j=i+1 1(ℓi = l)× 1(ℓj = r) + 1(ℓi = t)× 1(ℓj = l)

. (32)

For simplicity I index features with s. From proposition C.2 in Chandrasekhar and Jackson (2021)
under a sparsity condition31, Σ−1/2(β̃n − βn

0 ) → N(0, I) where βn
0 is the true rate of subgraph

generation. For a feature ℓ, the variance of the feature is the entry on the diagonal and the
31First, my networks are sparse by the definition of Chandrasekhar and Jackson (2021). If I assume a constant

growth rate of the density of links, then density is growing at about n1/3 or less (which is acceptable). Second, for
this particular model, none of the features chosen can incidentally generate any other feature. For example, links
cannot generate isolates, nor can isolates generate links. Because the second is true for this particular model, noting
the sparsity condition may be cracking a walnut with a sledgehammer, so to speak.
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standard errors are the square root:

Σs,s =
βn
0,s(1− βn

0,s)

κs

(
n
ms

) and σ̃s,s =

√
β̃n
s (1− β̃n

s )

κs

(
n
ms

) . (33)

wherems is the number of nodes involved in the feature and κs is the number of different possible
relabelings of the feature (note: for both isolates and links κs = 1). For the results, κs

(
n
ms

)
is the

sample size of the feature.

B.4.2 Pooled Subgraph Generation Models

Let countsv be the count of some subgraph s in village v, and potentialsv be the potential number
of times that feature could occur. These reflect the numerator and denominator, respectively, of
equations 30, 31, and 32 above. I estimate the coefficient associated with some subgraph s

β̃s =

∑4
v=1 countsv∑4

v=1 potentialsv
. (34)

This estimate uses only the relevant potential occurrences of the feature. Similarly, when esti-
mating the standard errors of a feature, I cannot use the same effective sample size as I would
use if I combined the networks. Let nv be the number of nodes in the village network. If I take
κs

(∑
nv

ms

)
, I would include many combinations of nodes that in reality could not form the subgraph

in question. Hence I estimate the standard errors the of pooled SUGM

σ̃s,s =

√√√√ β̃s(1− β̃s)

κs ×
∑4

v=1

(
nv

ms

) . (35)

B.4.3 Approximation of Variance of Ratios

I use an approximation of the variance of ratios.32 We want the ratio of the variance of two
coefficients β̃L,s and β̃L,ra,

V ar

(
β̃L,s

β̃L,ra

)
=

(
β̃L,s

β̃L,ra

)2(
(σs)

2

(β̃L,s)2
− 2Cov(β̃L,s, β̃L,ra)

β̃L,sβ̃L,s

+
σ2
ra

β̃2
L,ra

)

Given that the two coefficients derive from a similar data generating process and measure a sim-
ilar quantity, it is intuitive that Cov(β̃L,s, β̃L,ra) > 0. My priors are that the correlations between
these two coefficients would be close to one, but are unknown. Therefore, it is conservative to

32See https://www.stat.cmu.edu/ hseltman/files/ratio.pdf.
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estimate the variance of the ratio by assuming Cov(β̃L,s, β̃L,ra) = 0, since this term enters nega-
tively. This assumption leaves us with the expression

V ar

(
β̃L,s

β̃L,ra

)
=

(
β̃L,s

β̃L,ra

)2(
(σs)

2

(β̃L,s)2
+

σ2
ra

β̃2
L,ra

)

for the variance of the ratios.

B.4.4 Relationship of SUGMs to Stochastic Block Models

We can think about how the links and isolates with types model in the community network re-
lates to Stochastic Block Models (SBMs), a generative model for graphs containing communities.
We can characterize these SBMs according to a few parameters. For example, the Erdős-Rényi
random graph model is simply characterized by n, the size of the graph, and p, the probability of
linking between any two nodes in the graph. Another special case is the planted partition model,
which can be summarized using p, the probability of linking within community, q, the probability
of linking between communities, and {nC}, the size of the communities. (This model itself can
be represented as a SUGM colored by community membership.) However, in addition to commu-
nities, we also have types, which necessitates a more complex representation. In particular, we
might characterize it using {nℓ,C}, the number of type ℓ in community C , {pℓ,r} the probability
of linking within community between type ℓ and r, {qℓ,r}, and the probability of linking between
communities between type ℓ and type r.

In principle, I could write the SBM representation as a maximum likelihood model. However,
for efficiency’s sake, instead of recovering communities and affinities from SBM representations,
I detect communities and then estimate assortative matching in the community network. Recall
that the community network connects all members of the detected communities and none out-
side. Essentially, this would correspond to a strongly assortative SBM when only considering
communities: pℓ,r = 1 and qℓ,r = 0 ∀ℓ, r (assortative in the sense that community members tend
to link with each other, not in terms of assortative matching on risk preferences). Notably, in the
SUGMs, the coefficients are essentially functions of the composition of communities nℓ,C , which
means that when we estimate we are really just summarizing the composition of communities as
assortative matching on risk preferences in a way that can be compared to assortative matching
in the risk sharing network.
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B.5 Welfare Simulations

B.5.1 Simulation Algorithm

Before simulating, I remove all individuals who do not have preference data or who are not risk
averse, and discard resulting communities with only one member.

1. Sort communities into two bins with roughly equal total populations. The first bin will be
majority type 1 and the second will be majority type 2. To assign communities, first I sort
the communities into a random order. I designate a bin of type 1 majority and one for type 2
majority, and then I construct a running membership sum for each bin. I add a community
to bin 1 when sum1 ≤ sum2 and to bin 2 otherwise and proceed until all communities
have been added.33

2. Assign nodes of differing types to communities using a binomial process, varying the prob-
ability of success in that process according to what is implied by that scenario (i.e., pU ). A
success assigns a majority type node to that community while a failure assigns a minority
type node.

3. Compute the value functions for type 1 and type 2 agents in each community according to
the formulas found in Appendix A.1.6 and average across individuals to determine the per
capita losses due to covariate risk. These are reported in units of Purchasing Power Parity
(PPP).

Each of these steps is repeated for each repetition of the simulation.

B.5.2 Rate of Between Link Generation

How many connections are there between types in communities? The complete bipartite graphs
yields simple counts. A complete bipartite graph with N1g of type 1 and N2g of type 2 will have
N1gNg2 connections. Thus, the total number of actual connections between types within com-
munities is

∑G
g=1 N1gN2g. Additionally, the total number of potential links between types in the

entire village graph will be(
G∑

g=1

N1g

)(
G∑

g=1

N2g

)
= N1N2. ⇒ β̃1,2 =

∑G
g=1N1gN2g

N1N2

.

33Directly minimizing the difference in total membership in type 1 and type 2 majority communities is an np-hard
problem. This approach serves as a workaround.
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I assume equal parts of type 1 and type 2 agents, which I impose empirically as well, so then
N1 = N2 and N1 +N2 = N so N1 = N2 =

N
2

β̃1,2 =

∑G
g=1N1gN2g

N2

22

=
4×

∑G
g=1 N1gN2g

N2

β̃1,2 = 4×
G∑

g=1

N1g

N

N2g

N
= 4×

G∑
g=1

Ngp1g
N

Ngp2g
N

= 4×
G∑

g=1

(
Ng

N

)2

p1gp2g

For the last equality, recall that pℓg =
Nℓg

Ng
. I make the (heroic) simplifying assumption that

community sizes are the same, hence there’s a fixed Ng

N
= 1

G
. Additionally, I fix p1g = p̄U and

p2g = p̄L when p1g ≥ p2g and vice-versa when p1g < p2g, where p̄U = 1− p̄L.

β̃1,2 =
4

G2
×

G∑
g=1

p1gp2g =
4

G2
×

G∑
g=1

p̄U p̄L

Finally, I sum across groups and then rearrange to get the expression for β̃1,2 =
4
G
p̄U p̄L.

B.5.3 Rate of Within Risk Averse Link Generation

The total number of potential links generated is N(N−1)
2

. With completely connected communi-
ties, the number of connections ends up being

∑G
g=1 Ng(Ng−1)

2
. Suppose also, as above, thatNg =

N
G

.
Then,

β̃L =

∑G
g=1 Ng(Ng−1)

2
N(N−1)

2

=

∑G
g=1Ng(Ng − 1)

N(N − 1)

=

∑G
g=1

N
G
(N
G
− 1)

N(N − 1)
=

N(N
G
− 1)

N(N − 1)
=

(N
G
− 1)

(N − 1)
=

(N −G)

G(N − 1)
.

B.5.4 Ratio of Rates

The ratio of rates is
β̃1,2

β̃L

=

(∑G
g=1 N1gN2g

)/
N1N2(∑G

g=1 Ng(Ng−1)

2

)/(
N(N−1)

2

)
.

Based on the simplifications above, however, I can express the ratio of the link generation co-
efficients as an expression relating the proportion of types in each community to the rate of
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generation.

β̃1,2

β̃L

=
4
G
p̄U p̄L

(N−G)
G(N−1)

= 4
(N − 1)

(N −G)
p̄U p̄L ⇒ p̄U p̄L =

(
1

4

)(
N −G

N − 1

)(
β̃1,2

β̃L

)

The RHS of the equation lies between 0 and 1
4
. Note that as N becomes large,

(
N−G
N−1

)
→ 1.

However, the small sample correction does account for the fact that between type connections
make up a larger share of connections than within connections (note: when loops are omitted).
Another way to think of this is when sampling pairs, sampling without replacement only matters
when sampling pairs within a type. Therefore, I leave in the small sample correction. I can solve
the above by using a system of equations where p̄U + p̄L = 1, and use the quadratic formula to
get an analytic solution:

(pU , pL) = 0.5± 0.5×

√√√√1−
(
N −G

N − 1

)(
β̃1,2

β̃L

)

where pL ≤ 0.5 ≤ pU .

B.6 Robustness Checks

B.6.1 Selection-on-ObservablesResults: FurtherAddressingPopularity andHomophily

Assortative matching on risk preferences could reflect assortative matching on some other social
or economic dimension. In addition to the inclusion of kinship and risk aversion, my approach
for controlling for other observables related to popularity and homophily will be straightforward.
Homophily is a common feature of social networks and is similarly present in the context of risk
pooling (De Weerdt, 2002; Fafchamps and Gubert, 2007; Jaramillo et al., 2015).

Tables 7 and 8 present results from the selection on observables approach. I control for if the
pair is married, are co-wives, have the same occupation, are the same gender, are (additionally)
both men, have the same level of schooling, are both primary, secondary, or tertiary educated
(no/missing education left out), and for sums and absolute differences in: age, (family network)
degree centrality, betweenness centrality, and eigenvector centrality. Additionally, all regressions
feature village fixed effects. In general, the magnitude of β1 falls when controls are included. For
example, in Column 2, the estimate of β1 falls to −0.107 (still statistically significant at the 5%
level). One other important difference is that β1 and β4 no longer enter significantly individually
in Column 5, suggesting that family may be proxying for other social factors now controlled for.
However, β1 + β4 = −0.018 remains statistically significant from zero in this specification, but
now at the 5% level (χ2(1) = 4.85).
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Table 7: Dyadic Regression: Risk Sharing Network with Controls

(1) (2) (3) (4) (5)
|ηi − ηj| -0.00164 -0.0107∗ 0.00231 -0.0110∗ -0.00950

(-0.38) (-2.37) (0.52) (-2.48) (-1.92)

ηi + ηj -0.0102∗ -0.0150∗∗∗ -0.0150∗∗∗
(-2.15) (-3.36) (-3.36)

familyij 0.399∗∗∗ 0.400∗∗∗ 0.408∗∗∗
(25.33) (25.57) (23.77)

familyij × |ηi − ηj| -0.00851
(-0.92)

Village FE Yes Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes Yes
N 65102 65102 65102 65102 65102
R2 0.2322 0.2329 0.3445 0.3460 0.3461
t statistics are reported in parentheses and are computed using dyadic robust standard errors. All specifica-
tions are dyadic linear probability models with matching in the risk sharing network as the dependent variable.
ηi is risk aversion of individual i, so |ηi−ηj | is the absolute difference of risk aversion while ηi+ηj is the sum.
Both absolute differences and sums of risk aversion are transformed into z-scores. Controls include married,
are co-wives, have the same occupation, are the same gender, are both men, have the same level of schooling,
are both primary, secondary, or tertiary educated (no/missing education left out), and for sums and absolute
differences in: age, (family network) degree centrality, betweenness centrality, and eigenvector centrality.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 8: Dyadic Regression: Community Network with Controls

(1) (2) (3) (4) (5)
|ηi − ηj| 0.000144 0.000717 0.00139 0.000631 0.000547

(0.04) (0.20) (0.39) (0.18) (0.14)

ηi + ηj 0.000647 -0.000861 -0.000863
(0.21) (-0.27) (-0.27)

familyij 0.126∗∗∗ 0.126∗∗∗ 0.126∗∗∗
(8.21) (8.22) (7.23)

familyij × |ηi − ηj| 0.000486
(0.05)

Village FE Yes Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes Yes
N 65102 65102 65102 65102 65102
R2 0.2394 0.2394 0.2628 0.2628 0.2628
t statistics are reported in parentheses and are computed using dyadic robust standard errors. All specifica-
tions are dyadic linear probability models with matching in the risk sharing network as the dependent variable.
ηi is risk aversion of individual i, so |ηi−ηj | is the absolute difference of risk aversion while ηi+ηj is the sum.
Both absolute differences and sums of risk aversion are transformed into z-scores. Controls include married,
are co-wives, have the same occupation, are the same gender, are both men, have the same level of schooling,
are both primary, secondary, or tertiary educated (no/missing education left out), and for sums and absolute
differences in: age, (family network) degree centrality, betweenness centrality, and eigenvector centrality.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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B.6.2 Logistic Regression Results

I estimate assortative matching using a dyadic linear probability model because this allows me to
utilize village fixed effects in my specifications. However, logistic regression is typically consid-
ered a more appropriate approach for binary dependent variables, including in network formation
models. Therefore, to ensure my choice of specification does not influence the estimates of assor-
tative matching, I replicate Tables 2 and 3 here using logistic regression. The results of logistic
dyadic regression are estimated for the risk sharing network in Table 9 and the community net-
work in 10. These replicate the pattern of results from the dyadic regressions in the main text.
For the risk sharing network, we document assortative matching when using the sum of risk
aversion to control for popularity. Results based on heterogeneity around family also replicate.
Assortative matching on risk preferences is attenuated in the community network, even when
the sum of risk aversion is controlled for.

Table 9: Dyadic Logistic Regression: Bilateral Risk Sharing Network

(1) (2) (3) (4) (5)
|ηi − ηj| -0.0617 -0.127∗∗ -0.0179 -0.135∗∗ -0.110

(-1.09) (-2.66) (-0.30) (-2.76) (-1.81)

ηi + ηj -0.0752 -0.135∗∗∗ -0.136∗∗∗
(-1.89) (-3.34) (-3.34)

familyij 2.511∗∗∗ 2.535∗∗∗ 2.618∗∗∗
(31.12) (31.87) (26.04)

familyij × |ηi − ηj| -0.0850
(-1.34)

Village Dummies Yes Yes Yes Yes Yes
Other Controls No No No No No
N 71052 71052 71052 71052 71052
t statistics are reported in parentheses and are computed using dyadic robust standard errors. All specifi-
cations are dyadic linear probability models with matching in the risk sharing network as the dependent
variable. ηi is risk aversion of individual i, so |ηi − ηj | is the absolute difference of risk aversion while
ηi + ηj is the sum. Both absolute differences and sums of risk aversion are transformed into z-scores.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 10: Dyadic Logistic Regression: Community Network

(1) (2) (3) (4) (5)
|ηi − ηj| -0.0942 -0.0907 -0.0483 -0.0684 -0.0814

(-1.34) (-1.22) (-0.71) (-0.95) (-0.76)

ηi + ηj 0.00404 -0.0235 -0.0235
(0.07) (-0.43) (-0.43)

familyij 2.003∗∗∗ 2.004∗∗∗ 1.978∗∗∗
(16.05) (16.08) (12.38)

familyij × |ηi − ηj| 0.0278
(0.26)

Village Dummies Yes Yes Yes Yes Yes
Other Controls No No No No No
N 71052 71052 71052 71052 71052
t statistics are reported in parentheses and are computed using dyadic robust standard errors. All spec-
ifications are dyadic linear probability models with matching in the risk sharing network as the depen-
dent variable. ηi is risk aversion of individual i, so |ηi − ηj | is the absolute difference of risk aversion
while ηi + ηj is the sum. Both absolute differences and sums of risk aversion are transformed into z-
scores. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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B.6.3 Tetrad Logit Results

As a robustness check on the role of degree heterogeneity, I estimate tetrad logit in each village
(Graham, 2017).34 I estimate the models in Python 3.7 using the netrics package.

Turning to the results, in Table 11 Panel A I focus on the estimates unconditional on the sum
of risk aversion for each village. Two of these village coefficients are negative and of similar
magnitude to the logit coefficient, while one is very close to zero, and one is 2.5-3 times as large
as the logit coefficient. While three of these estimates are themselves insignificant, this is largely
due to the loss in power from splitting my sample into four parts. In fact, the simple average of
the village coefficients without controls is very similar to the logistic coefficient when controlling
for the sum of risk aversion. Additionally, as presented in Table 11 Panel B, the change in the
estimated effect of the difference in risk aversion is not as pronounced in these estimates as it was
in linear probability model or the logistic regression results presented earlier. The coefficients on
the sum of risk aversion also fall in the tetrad logit specifications. This gives me confidence in
the validity of my preferred specification as presented in the main text.

Interestingly, when this same back of the envelope calculation is done for the community
tetrad logit results, I also find similar results to the logistic regression results. These can be found,
by village, in Table 12. This is consistent with a situation where measured assortative matching
in the community network does not suffer from degree heterogeneity as a confounder in the
same way that the risk sharing results do. As before, this represents an attenuation of assortative
matching in communities relative to risk sharing networks.35

34While it is theoretically possible to build an estimate from multiple villages by brute force, a back-of-the-
envelope calculation indicates to me that I do not have the computing resources to do so as my disposal. This might
be avoided with greater understanding of the function that indexes tetrads, using this same function and adjusting
the inputs to feed in the dyadic and tetrad mappings within villages.

35This fact may be useful for future empirical work on network formation. In particular, since community detec-
tion can construct communities of varying size, walktrap communities with short path lengths might in fact serve
as useful in estimating assortative matching in practice.
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Table 11: Tetrad Logit with Risk Sharing Network

Match Between i and j in Risk Sharing Network Simple Average
Darmang Pokrom Oboadaka Konkonuru = (1)+(2)+(3)+(4)

4(1) (2) (3) (4)
Panel A: Unconditional Estimates

|ηi − ηj| −0.307 0.002 −0.094 −0.098 −0.124
(0.058) (0.052) (0.051) (0.067)

Panel B: Conditional Estimates
|ηi − ηj| −0.319 −0.063 −0.109 −0.119 −0.153

(0.060) (0.051) (0.061) (0.047)

ηi + ηj −0.050 −0.191 −0.069 −0.093 −0.040
(0.065) (0.108) (0.076) (0.071)

Fraction Tetrads Used 0.074 0.035 0.045 0.076

Standard errors are presented in parentheses below logistic regression coefficients. Fraction of tetrads used de-
notes the fraction which are selected via the kernel function presented in Graham (2017), and is static across the
two regressions.

Table 12: Tetrad Logit with Community Network

Village Simple Average
Darmang Pokrom Oboadaka Konkonuru = (1)+(2)+(3)+(4)

4(1) (2) (3) (4)
Panel A: Unconditional Estimates

|ηi − ηj| −0.214 −0.227 0.001 0.064 −0.094
(0.060) (0.111) (0.073) (0.068)

Panel B: Conditional Estimates
|ηi − ηj| −0.223 −0.204 −0.016 0.076 −0.092

(0.111) (0.089) (0.076) (0.071)

ηi + ηj −0.167 0.119 −0.122 0.134 −0.009
(0.185) (0.124) (0.129) (0.106)

Fraction Tetrads Used 0.013 0.004 0.006 0.013

Standard errors are presented in parentheses below logistic regression coefficients. Fraction of tetrads used de-
notes the fraction which are selected via the kernel function presented in Graham (2017), and is static across the
two regressions.
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B.6.4 Full Results of SUGM Estimation

Table 13: Baseline Pooled Subgraph Generation Model with Risk Sharing Network

Feature Count Potential Sample Size Coef. Std. Err.
Isolates:

Nuisance 49 178 631 0.2753 0.0178
Risk Averse 41 453 631 0.0905 0.0114

Within links:
Nuisance 76 3888 49536 0.0195 0.0006

Risk Averse 1030 25472 49536 0.0404 0.0009

Between links:
Risk Averse, Nuisance 502 20176 49536 0.0249 0.0007

Baseline Pooled SUGM using the risk sharing network with features including links and isolates by
whether nodes are risk averse or are nuisances. Nuisance nodes are those who either have unmea-
sured risk aversion (i.e., were not surveyed) or who are risk loving, who I assume would not engage
in risk sharing. Count is the number of subgraphs which actually display the feature, potential is
the total number that could display the feature, and sample size is that used to estimate the stan-
dard errors.

Table 14: Baseline Pooled Subgraph Generation Model with Community Network

Feature Count Potential Sample Size Coef. Std. Err.
Isolates:

Nuisance 56 178 631 0.3146 0.0185
Risk averse 60 453 631 0.1325 0.0135

Within links:
Nuisance 177 3888 49536 0.0455 0.0009

Risk averse 2365 25472 49536 0.0928 0.0013

Between links:
Risk averse, nuisance 1311 20176 49536 0.065 0.0011
Baseline Pooled SUGM using the community network with features including links and isolates
by whether nodes are risk averse or are nuisances. Nuisance nodes are those who either have un-
measured risk aversion (i.e., were not surveyed) or who are risk loving, who I assume would not
engage in risk sharing. Count is the number of subgraphs which actually display the feature, po-
tential is the total number that could display the feature, and sample size is that used to estimate
the standard errors.
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Table 15: Preferences Pooled Subgraph Generation Model with Risk Sharing Network

Feature Count Potential Sample Size Coef. Std. Err.
Isolates:

Less risk averse 22 236 631 0.0932 0.0116
More risk averse 19 217 631 0.0876 0.0113

Not surveyed 36 96 631 0.375 0.0193
Risk loving 13 82 631 0.1585 0.0145

Within links:
Less risk averse 421 7511 49536 0.0561 0.001

More risk averse 186 6223 49536 0.0299 0.0008
Not surveyed 20 1133 49536 0.0177 0.0006

Risk loving 33 814 49536 0.0405 0.0009

Between links:
Less risk averse, more risk averse 423 11738 49536 0.036 0.0008

Less risk averse, not surveyed 132 5879 49536 0.0225 0.0007
Less risk averse, risk loving 163 4765 49536 0.0342 0.0008

More risk averse, not surveyed 66 5057 49536 0.0131 0.0005
More risk averse, risk loving 141 4475 49536 0.0315 0.0008

Risk loving, not surveyed 23 1941 49536 0.0118 0.0005
Preferences Pooled SUGM using the risk sharing network with features including links and isolates by whether
nodes are less risk averse, more risk averse, are risk loving, or have unmeasured risk aversion (were not sur-
veyed). Count is the number of subgraphs which actually display the feature, potential is the total number that
could display the feature, and sample size is that used to estimate the standard errors.
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Table 16: Preferences Pooled Subgraph Generation Model with Community Network

Feature Count Potential Sample Size Coef. Std. Err.
Isolates:

Less risk averse 38 236 631 0.161 0.0146
More risk averse 22 217 631 0.1014 0.012

Not surveyed 39 96 631 0.4062 0.0196
Risk loving 17 82 631 0.2073 0.0161

Within links:
Less risk averse 893 7511 49536 0.1189 0.0015

More risk averse 444 6223 49536 0.0713 0.0012
Not surveyed 42 1133 49536 0.0371 0.0008

Risk loving 59 814 49536 0.0725 0.0012

Between links:
Less risk averse, more risk averse 1028 11738 49536 0.0876 0.0013

Less risk averse, not surveyed 379 5879 49536 0.0645 0.0011
Less risk averse, risk loving 373 4765 49536 0.0783 0.0012

More risk averse, not surveyed 248 5057 49536 0.049 0.001
More risk averse, risk loving 311 4475 49536 0.0695 0.0011

risk loving, not surveyed 76 1941 49536 0.0392 0.0009
Preferences Pooled SUGM using the community network with features including links and isolates by whether
nodes are less risk averse, more risk averse, are risk loving, or have unmeasured risk aversion (were not sur-
veyed). Count is the number of subgraphs which actually display the feature, potential is the total number that
could display the feature, and sample size is that used to estimate the standard errors.
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B.7 Network Visualization
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(b) Oboadaka
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(c) Konkonuru

Figure 10: Risk Sharing Networks in Villages with Risk Aversion Indicated by Color
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(a) Darmang (b) Pokrom

(c) Oboadaka (d) Konkonuru

Figure 11: Risk sharing networks in villages with walktrap community detection assignment
overlaid. Nodes are individuals and edges are links in the risk sharing network. Detected com-
munities are represented by shaded regions and node colors.

61


	Introduction
	Theoretical Model
	Risk Sharing in Communities
	Setup
	Optimization Problem
	Solutions and Value Functions

	The Planner's Problem

	Data and Context
	Risk and Resilience in Ghana
	Variable Construction
	Risk Preferences
	Risk Sharing Network
	Community Detection and Community Networks


	Empirical Strategy
	Dyadic Regression
	Risk Sharing Networks
	Heterogeneity by Family Ties
	Community Network
	Estimation and Standard Errors

	Subgraph Generation Models
	Intuition
	Links and Isolates Subgraph Generation Model with Risk Preference Types
	Pooled Subgraph Generation Models
	Differences in Assortative Matching


	Results
	Dyadic Regression
	Risk Sharing Network
	Community Network
	Addressing Threats to Validity

	Subgraph Generation Models with Types

	Welfare Implications of Assortative Matching
	Conclusion
	Summary
	Limitations
	Discussion and Future Work

	Theoretical Appendix
	Risk Sharing in Communities
	Focus on Risk Averse Individuals
	Expected Utility
	Feasibility of Risk Sharing
	Solving the Lagrangian
	The Rate of Risk Pooling
	Value Functions

	Optimal Assignment and Village Composition 
	The Welfare Implications of Risk Preferences

	Empirical Appendix
	Measuring Risk Preferences
	Risk Sharing Networks
	Community Detection
	Walktrap Algorithm
	Computing Distances using Random Walks
	Modularity

	Subgraph Generation Models
	Estimation
	Pooled Subgraph Generation Models
	Approximation of Variance of Ratios
	Relationship of SUGMs to Stochastic Block Models

	Welfare Simulations
	Simulation Algorithm
	Rate of Between Link Generation
	Rate of Within Risk Averse Link Generation
	Ratio of Rates

	Robustness Checks
	Selection-on-Observables Results: Further Addressing Popularity and Homophily
	Logistic Regression Results
	Tetrad Logit Results
	Full Results of SUGM Estimation

	Network Visualization


