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1 Risk Preferences and Prospect Theory

At some point, I considered risk preferences from the perspective of prospect theory, using the fact that
games had positive and negative frames. I abandoned this for reasons of complexity and due to the fact that
there is some ambiguity about distributions that might span zero for this utility function. Nevertheless,
the results of that effort are presented here.

To work in the prospect theory framework, it becomes important to work with a more general form of
the exponential utility function. This more general function will be constructed to allow for risk aversion
and risk loving behavior and to take into account individuals who have different preferences in the gains
and losses domain.

u(c) =


1−e−ηc

|κ|η if c > 0

c if c = 0
1−e−κηc

κη if c < 0

(1)

Leaving aside risk neutrality, using a set of four hypothetical gambles I can describe 12 different types
of agents. Agents are (risk averse in gains, risk loving in gains) × (risk averse in losses, risk loving in
losses) × (loss averse, loss neutral, loss loving). In general, I lay aside loss aversion and consider four main
types of individuals. First, risk averse individuals who are risk averse in both gains and losses (η > 0,
κ > 0). Second, risk loving individuals who are risk loving in both gains and losses (η < 0, κ > 0). Third,
prospect theory style individuals who exhibit an S-shaped curve similar to the one discussed in Kahneman
and Tversky (1979) (η > 0, κ < 0). Fourth, “unicorns” who are risk loving in gains but risk averse in losses
(η < 0, κ < 0).1 These potential preferences are plotted in figure 1.

The first two menus presented are in the gains domain. In the first menu, the risky gamble YB is held
fixed while increasing the sure payment. In the second, the sure payment is held fixed while reducing the
upside of the gamble. I assume that if an individual reaches a point of indifference between two gambles,
I assign them to the midpoint between the two gambles. Hence, if the mean differs, I take the average of
the mean of the two gambles and assign this value to the point of indifference. If the variance differs, I

1These unicorns may not be unicorns in situations with small probabilities, as in Kahneman and Tversky’s fourfold pattern.
This is not our context.
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Figure 1: Utility functions of individuals with various types of risk preferences (scaled to be equal in the
gains domain).
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Figure 2: Distribution of individual preference parameters from CARA utility. x-axis corresponds to η̄,
y-axis corresponds to κ̄η.

take the average of variances and assign this value to the point of indifference. The second two menus are
reflections of the first two onto the domain of losses.

I compute either η̂ or κ̂η (the combined coefficient of risk aversion in the domain of losses) for each
lottery and individual. I have two sets of two indifference points, sp to combine these into measures of risk
aversion, I average η̂ and κ̂η over individuals, and use these averages η̄i κ̄ηi and individual parameters. I
then are able to find the value of κ̄i, taking κ̄ηi/η̄i.

I can still represent expected utility as a mean variance utility function in the domain of gains and the
domain of losses. In the domain of losses, I write

E(Y )− κη

2
V (Y ) (2)

I look at a menu of choices between hypothetical gambles. YA is a set of sure payments and YB is a set of
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Pref. Parameter
η̂a η̂b κ̂ηc κ̂ηd

η̂a 1.000 0.703 0.400 0.436
η̂b 1.000 0.405 0.409

κ̂ηc 1.000 0.684
κ̂ηd 1.000

Table 1: Pearson correlations between measures of risk aversion based on menus of gambles in the domain
of gains and domain of losses.

risky income sources. For mathematical tractability, I assume YB is normally distributed. In the domain of
gains, respondents are able to choose between these will be indifferent between the two when

E(YB)−
η

2
V (YB) = YA (3)

Observing this indifference point, I can write

η =
2(E(YBg)− YAg)

V (YBg)
(4)

and recover the coefficient of absolute risk aversion. Likewise, in the domain of losses, at the indifference
point

E(−YBl)−
κη

2
V (−YBl) = −YAl. (5)

I write
κη =

2(YAl − E(YBl))

V (YBl)
(6)

So then κ is the ratio of risk aversion in the domain of gains to risk aversion in the domain of losses. This
simplifies to the ratio of the respective risk premiums.

κ =
E(YBg)− YAg

YAl − E(YBl)
=

RPg

RPl
(7)

Within individuals, measures of risk aversion are highly correlated. For example, in the gains domain
the η̂’s between the two lotteries correlates at a rate of 0.703. Likewise, κ̂η’s correlate at a rate of 0.684.
Between the domain of gains and losses, correlations are lower, but still on the order of about 0.4. See
Table 1. Of those with full data 313 are risk averse, 127 are prospect theory, 46 are risk loving, and 18 are
unicorns. The distribution of preferences is plotted in Figure 2.

2 Tuning the Walktrap Algorithm

While it is difficult to demonstrate every aspect of tuning community detection algorithms, I have in Figure
3 depicted how detected communities differ when the length of random walks increases, using data from
a single village.
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2 Steps, Modularity=  0.14
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3 Steps, Modularity=  0.18
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5 Steps, Modularity=  0.15
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Figure 3: Detected communities using the Walktrap algorithm for a gift network in the village of Darmang.
Panels depict walks of different lengths, starting at length 1 and ending at length 8. Within this range, as
walks lengthen, the number of communities detected falls from 13 to 7.
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3 Household Structure and Networks

An important aspect of this data, as is fully explored by Castilla and Walker (2013), is the household
structure of the data. While this does not play a part in my empirical exploration, it is interesting to
visualize this aspect of the data. I have done so in Figure 4.
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Figure 4: Risk Sharing Networks in Darmang (top left), Pokrom (top right), Oboadaka (bottom left), and
Konkonuru (bottom right) with spouses (color = spouse type) and household numbers.
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4 Risk Sharing Regressions

At an early stage in this project, I documented idiosyncratic risk sharing within these villages using con-
sumption smoothing regressions. I present these methods and results here.

Testing for the presence of risk sharing, following Kinnan (2021), I use three separate and comple-
mentary tests. First, if risk sharing within island is perfect, neither income nor other shocks should effect
the consumption of a particular household. Thus these other factors should not enter significantly into the
consumption regression when controlling for village-year dummies, community-year dummies and house-
hold fixed effects. Conversely, if these variables enter significantly, I conclude that insurance is imperfect
at the community level. In my specification, I use only income as an additional explanatory variable. Sec-
ond, I test the joint significance of time-community fixed effects to test if consumption comoves within
communities. Third, I use a version of the contrast estimator presented in Suri (2005), Kinnan (2021) and
Boozer and Cacciola (2001).

4.1 Empirical Strategy

4.1.1 Naive Specifications

Following Kinnan (2021), I estimate a total of twelve specifications at the household level. I aggregate all
variables over the course of a year. The full specification is as follows:

cit = αW yit + βi + γgt + δvt + εit. (8)

where cit is the ith households’ consumption in round t, yit is income, βi are household level fixed effects,
and γgt are group-round fixed effects. First, I estimate this base specification with only household fixed
effects. Second, I estimate the model with village-year fixed effects. Third, I drop village-year fixed effects
and add community-year fixed effects. Fourth, I estimate a village averaged model. Fifth, I estimate the
community averaged model (with village-year fixed effects).

4.1.2 Measurement Error and Instrumental Variables

Measurement error in this context has the potential to attenuate the magnitude of αW . This will matter
when it comes to tests of risk sharing because the attenuation gives impression that consumption smooth-
ing is better than it is in fact. Thus, for the sixth through tenth specifications, I repeat the above with
researcher induced shocks used as an instrument for income. In general, I expect the coefficient on income
to rise in these instrumented cases due to measurement error, as is the case in Kinnan (2021).

4.1.3 Tests of Risk Sharing

In these regression equations I am interested in three (necessary but not sufficient) tests for risk sharing:
First, significance of a standard t-test of α̂. α is inversely proportional to the degree of risk sharing within
a community. For perfect risk sharing to exist, I should necessarily fail to reject H0 : α = 0. Other values
of α̂ between 0 and 1 suggest some (imperfect) degree of consumption smoothing is taking place. This test

7



faces the limitation that it treats all consumption smoothing as risk sharing. To handle this issue, I use a
second test for risk sharing. I construct a contrast estimator as used in Suri (2005) and Boozer and Cacciola
(2001). I estimate

cit = αW yit + βi + γgt + εit (9)

and
cgt = αBygt + νit. (10)

Using the coefficients on the income terms from these regressions results, I can compute a statistic mea-
suring the extent of risk sharing

Â = 1− α̂W

α̂B
(11)

To test that risk sharing is present, I test H0 : A = 0, computing standard errors using delta method.
Third, the joint significance of the community-year dummies by F -test. For risk sharing to be present,
these community-year fixed effects need be significant.2 This test functions similarly to the first test,
testing that consumption co-moves within communities. This is not a sufficient test for risk sharing, If risk
sharing is taking place, group consumption should do a good job explaining the individual consumption
of the group members.

●

●

●

●

●

●

Naive

IV: Shock

IV: Gain

−0.2 0.0 0.2

Within Estimates (90% CI)

Fixed Effects

●

●

Community−round

Village−round

Inverse Rate of Risk Sharing

Figure 5: Within Estimates from Risk Sharing Regressions

2Note that there are two different tests of significance. One is to test the joint significance of the fixed effects from zero.
The second is to test the joint significance of the difference between these fixed effects and the village-time fixed effect. H0 :
γgt − γ̄vt = 0 ∀g, t.
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Figure 6: Between Estimates from Risk Sharing Regressions

4.2 Results

I estimate the risk sharing regressions as detailed above and present the results in Tables 2, 5 and 6. These
results are also presented in the coefficient plots in Figures 5 and 6.

4.2.1 Naive Estimates

In the naı̈ve (uninstrumented) specification, inverse rates of risk sharing have similar magnitudes across
specifications, but perfect risk sharing is rejected in both specifications.

4.2.2 First Stage Estimates

It may be reasonable to worry about weak instrument problems. First, only about 20% of households receive
a positive shock. Second, if these gains are relatively private, it could be argued that this would mean they
are less likely to be shared to to hidden income Walker and Castilla (2013); Castilla and Walker (2013).
F -statistics are calculated per Stock and Yogo (2005) and can be found in Tables 3 and 4. The F-stats for
the FE regressions suggest an issue of instrumental relevance, which may suggest bias in the IV estimates.
In the case of the aggregated village and community level regressions, however, the IV regressions feature
sufficiently large F -stats. Based on relevance, we prefer the gain instrument to if there was any shock.
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Table 2: Risk Pooling Regressions: Naive Specification

Food Expenditure

(1) (2) (3) (4) (5)

Income 0.014∗∗ 0.014∗∗ 0.015∗∗ −0.058 0.059∗∗∗
(0.006) (0.006) (0.006) (0.076) (0.014)

Constant 299.306∗∗∗ 228.664∗∗∗
(30.931) (8.463)

Household FE Yes Yes Yes
Village-round FE Yes
Community-round FE Yes
Aggregation HH HH HH Village Community
Observations 1,568 1,568 1,566 20 311
R2 0.561 0.583 0.644 0.031 0.054
Adjusted R2 0.448 0.468 0.445 −0.023 0.051

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

Table 3: First stage estimates from instrumenting income with any positive shock

Income
(6) (7) (8) (9) (10)

Postive Shock 119.756∗ 140.051∗∗ 129.963∗ 2,123.777∗∗∗ 518.586∗∗∗
(64.448) (66.114) (77.386) (350.580) (101.698)

Household FE Yes Yes Yes
Village-round FE Yes
Community-round FE Yes
Aggregation HH HH HH Village Community
Observations 1,568 1,568 1,566 20 311
F (1,df) (excluded) 3.453 4.487 2.82 36.698 26.003
R2 0.720 0.725 0.752 −2.129 −0.124
Adjusted R2 0.648 0.650 0.613 −2.294 −0.128

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Table 4: First stage estimates from instrumenting income with the gain from any positive shock

Income
(6) (7) (8) (9) (10)

Gain 0.619∗∗ 0.637∗∗ 0.588∗∗ 15.320∗∗∗ 3.078∗∗∗
(0.263) (0.265) (0.290) (2.826) (0.818)

Household FE Yes Yes Yes
Village-round FE Yes
Community-round FE Yes
Aggregation HH HH HH Village Community
Observations 1,568 1,568 1,566 20 311
F (1,df) (excluded) 5.54 5.78 4.124 29.385 14.151
R2 0.720 0.726 0.753 −2.602 −0.165
Adjusted R2 0.648 0.650 0.614 −2.792 −0.169

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

4.2.3 IV Estimates

When income is instrumented for with shocks to income, inverse coefficient estimates tend to increase.
If positive shocks are a valid instrument, this suggests worries about (classical) measurement error tend
be well founded. Looking at the naive specifications, we reject perfect risk sharing (significant at the 5%
level) in all three household level regressions. The magnitudes of the inverse rate of risk sharing are very
small, however, and tend to be similar across specifications. For example in the village-round specification,
α̂ = 0.014, implying consumption is smoothed at a rate of 0.986.

Even when instrumenting income, we often fail to reject the null of perfect risk sharing, even as esti-
mated magnitudes of the rate of inverse risk sharing rise. When instrumenting for income with whether
or not a positive shock occurred, the rate of inverse risk sharing in the village-round specification rises
to 0.113, while the community level estimate rises to 0.072. When instrumenting with gain, the rate of
inverse risk sharing in the village-round specification rises to 0.031, while the community level estimate
rises to 0.011. None of these coefficient estimates are statistically significant. We do see that coefficient
estimates from the community-round regressions are smaller than their counterparts in the village-round
regressions.

4.2.4 Contrast Estimators

At the village level the contrast estimators are Âv = 1.248, and Âv,IV = 0.809 and Âv,IV 2 = 0.956 when
using total gain as an instrument. The contrast estimator from the naı̈ve regressions seem to an issues. In
theory, the coefficient on α̂B ≥ 0. At the community level, the contrast estimators are Âg = 0.743 and
Âg,IV = 0.894 and Âg,IV 2 = 0.985 using gain as an instrument.
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Table 5: Risk sharing results from instrumenting income with any positive shock

Food Expenditure
(6) (7) (8) (9) (10)

Income 0.056 0.128 0.060 0.696∗∗∗ 0.685∗∗∗
(0.111) (0.108) (0.118) (0.077) (0.127)

Household FE Yes Yes Yes
Village-round FE Yes
Community-round FE Yes
Aggregation HH HH HH Village Community
df 1246 1230 1002 19 310
Observations 1,568 1,568 1,566 20 311

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

Table 6: Risk sharing results from instrumenting income with the gain from any positive shock

Food Expenditure
(6) (7) (8) (9) (10)

Income 0.007 0.029 0.005 0.692∗∗∗ 0.752∗∗∗
(0.086) (0.083) (0.095) (0.080) (0.183)

Household FE Yes Yes Yes
Village-round FE Yes
Community-round FE Yes
Aggregation HH HH HH Village Community
df 1246 1230 1002 19 310
Observations 1,568 1,568 1,566 20 311

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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