
Social Network Structure and the Radius of Risk Sharing

Daniel S. Putman∗

�is Version: January 27, 2025
Click Here For Most Current Version

Abstract

Informal risk sharing, an important coping strategy, is mediated by social networks. Does risk sharing
extend beyond immediate connections? If so, what is its radius? I examine the radius of risk sharing as
a function of network structure. To do so, I employ community detection—a tool imported from net-
work science—and dyadic regression. I �nd evidence the radius of risk sharing extends beyond direct
connections. Using data from a behavioral experiment in Colombia, I �nd that detected community
co-membership and distance-2 connections (i.e., friends of friends) explain co-membership in experi-
mental risk sharing groups. Using data from a village census in Tanzania, I �nd that distance-2 and 3
connections explain risk sharing transfers, but detected community co-membership does not. I address
a crucial issue of network sampling in the Colombia illustration using simulation methods, �nding my
preferred speci�cation is robust to this concern. �ese methods may bene�t those who seek to under-
stand the quality of risk sharing when risk sharing groups are loosely de�ned and illegible to outsiders.
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1 Introduction

Risk pervades the economic lives of the poor, determining the crops they plant, what jobs they take, the
investments they make, and where they live (Banerjee and Du�o, 2007; Collins et al., 2010). �is fact can
lead to costly distortions in decision-making (Elbers et al., 2007; Karlan et al., 2014). Similarly, vulnerability
to uncertainty itself reduces welfare in an ex ante sense (Ligon and Schechter, 2003). Despite this, formal
�nancial markets that deal explicitly with risk, including insurance markets, are o�en missing for the poor
(Mccord et al., 2007; Demirguc-Kunt et al., 2018). In the absence of formal insurance markets, informal risk
sharing arrangements built on trust and reciprocity have long been studied as an important method of
managing risk (Sco�, 1976; Fafchamps and Lund, 2003; Karlan et al., 2009). �ese social motivations are
powerful but limited tools to ensure cooperation. As the size and diversity of risk sharing groups grow,
it o�en becomes more di�cult to rely on trust, reciprocity, or monitoring (via social networks) to ensure
that they function well (Genicot and Ray, 2003; Fitzsimons et al., 2018; Jain, 2020).

In this paper, I investigate the radius of risk sharing. Like the radius of a circle measures the distance
from the center of the circle to the perimeter, the radius of risk sharing measures distance from a node to
perimeter of the relevant risk sharing network. Where early theory and empirical work placed the village
as the radius of risk sharing (Townsend, 1994), more recent empirical work pushed social relationships,
as measured by network surveys, to the fore (Fafchamps and Lund, 2003). Still, there are many reasons
why risk sharing might extend beyond one’s direct friends and family. �eoretical work in economics has
pointed to the importance of �ows over networks (Bramoullé and Kranton, 2007; Bourlès et al., 2017) and
group formation (Genicot and Ray, 2003; Ambrus et al., 2014). Likewise, when sociologists probe people’s
motivations for who they ask for favors, they o�en �nd that these decisions were made intuitively as
opposed to deliberatively (Small and Sukhu, 2016).1 �is suggests that the more deliberative approach
which tends to be used in network surveys might miss more distant connections which ma�er for risk
sharing. Not as much is known empirically about the radius of risk sharing—most of the work which posits
a radius greater than immediate friends and family is either theoretical or simulation based. Moreover, a
meaningful distance exists between one’s immediate friends and family and the ‘six degrees of separation’
that might serve as the radius of a village (Strogatz and Wa�s, 1998; Henderson and Alam, 2022).

What is the radius of risk sharing in social networks? To understand who is near and distant in
networks, I examine what network structure best explains co-participation in risk sharing. I draw on
community detection (Pons and Latapy, 2005; Fortunato, 2010; Newman, 2012) and dyadic regression, an
econometric model of network formation (Graham, 2020). I argue that detected communities—clusters of
individuals in networks who are closely connected within community and sparsely connected between
communities—may serve as a principled method to determine the radius of risk sharing in social networks

1From Small and Sukhu (2016): in deliberative mobilization “people determine their needs, assess who in their network
has the needed a�ributes, and then turn to that helper.” Whereas in intuitive mobilization they circumvent this process, acting
spontaneously or incidentally. For example, people were asked for a favor because they happened to be there, as opposed to their
being the most useful or one’s closest friend.
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in addition to established measures of network distance.2

To answer this question, I use secondary data from two studies of risk sharing. �e �rst of these is
a behavioral risk sharing experiment in Colombia (A�anasio et al., 2012b). �e experiment gives par-
ticipants skin in the game, presenting them with real money gambles and also the ability to share the
risk of these gambles with others. Additionally, it includes detailed social network data from participants
including friendship and family relationships. Second, I utilize an observational dataset of risk sharing
networks and transfers from a census of a village in Tanzania (De Weerdt, 2018).3 I estimate econometric
models of network formation to test whether network structure can explain risk sharing behavior. I use
dyadic regression, an approach which treats the dyad—any pair of nodes within the network (connected or
unconnected)—as the unit of observation. I characterize network structure around these relationships in
the network. More speci�cally, network structure that might engender risk sharing includes direct connec-
tions in social networks (Fafchamps and Lund, 2003), connections a step removed (i.e., ‘friends of friends’)
(De Weerdt and Dercon, 2006), support (or the presence of a ‘common friend,’ sometimes called ‘triadic
closure’) (Jackson et al., 2012), or more complex structures, like those quanti�ed by detected communi-
ties. To detect communities, I use the Walktrap algorithm (Pons and Latapy, 2005). �is algorithm uses
random walks over the network (i.e., from node-to-node, along edges) to understand where information
or transactions might become ‘trapped’ within the network structure. Intuitively, these same areas within
the network might provide good environments for risk sharing.

Estimates from the risk sharing experiment in Colombia indicate that co-membership in detected com-
munities consistently helps explain co-membership in experimental risk sharing groups, even when con-
trolling for other aspects of network structure. In my preferred speci�cation, co-membership in such a
community is associated with a 4.9 percentage point greater propensity to join an experimental risk shar-
ing group together. Shorter network distance translates into a higher propensity to share risk as well:
Distance-1 and 2 connections consistently explain co-membership in experimental risk sharing groups,
whereas distance-3 connections fail to do so. Furthermore, supported relationships, which capture tightly
knit social network structure, are strongly correlated with co-membership in risk sharing groups.

I also estimate a saturated speci�cation which includes all interactions of the network structure vari-
ables. I do so to obtain a conditional probability of group co-membership at various distances, which I refer
to as radii of risk sharing. If the radius of risk sharing is the distance at which there is any co-participation
in risk sharing, these radii generalizes this de�nition to capture distances at which there is a speci�c level
of risk sharing. From these, I �nd that those in the same community are more likely to join the same
risk sharing group conditional on every other measure of distance, though sometimes the estimates lose
signi�cance in the smaller samples. Most strikingly, I see supported relationships that also lie within com-
munities have a 24 percentage point excess probability of joining the same risk sharing group, relative

2While community detection algorithms have been widely used in �elds where network data is employed, economics has
been slow to adopt even as the economics of networks has grown as a �eld. Two notable exceptions are the use of community
detection to study labor mobility (Schmu�e, 2014) and to help model exposures in derivative networks (Zema, 2023).

3�is data has been well explored, and forms the basis for results in several related papers including De Weerdt and Dercon
(2006), Dercon (2006), Comola and Fafchamps (2014), Comola and Fafchamps (2017), and Henderson and Alam (2022). While this
network di�ers in a number of ways from the Colombia data, as is discussed throughout, it is the closest network for which a
census sample is available.

2



to an 8 percentage point excess probability among a similarly supported pair who are not co-members of
a community.4 �is suggests that communities can not only help to understand the outer radius of risk
sharing but also may help in identifying ‘inner circles’ of risk sharing as well.

Not all of these results extend to the Tanzania illustration. While in simpler speci�cations, detected
community co-membership is positively and signi�cantly associated with risk sharing transfers, this ef-
fect disappears in my preferred speci�cation, when Distance-2 and 3 connections are accounted for. In this
speci�cation co-membership in a community is associated with a 1.1 percentage point greater propensity
to make a risk sharing transfer, which is not signi�cant at standard signi�cance levels. However, these
results are consistent with those from Colombia in that the radius of risk sharing extends beyond direct
connections. In place of the community, I �nd an association between distance-2 and distance-3 connec-
tions with having made a transfer. In particular, distance-2 and 3 connections are associated with 13.8
and 3.0 percentage point increases in the probability of risk sharing transfers, respectively. As might be
expected, in this context communities do not identify di�erent radii of risk sharing as they did in the
Colombia experiment. Instead, network distance drives the results.

�is di�erence in results does not invalidate the Colombia illustration, nor the Tanzania illustration.
�e two empirical contexts di�er in a number of ways which might explain the discrepancy in results:
in addition to cultural and environmental factors more generally, these factors include the nature of the
explanatory network, the outcome, sampling, and experimental set-up. Each illustration features its own
advantages. �e advantages of the Colombia data center around the experimental design and the ability to
account for local heterogeneity, whereas the advantages for the Tanzania data center around sampling and
ecological validity—the degree to which results of the illustrations can be applied to real world se�ings.
Based on these factors, I prefer the Colombia illustration on balance.

�e �rst advantage of the experimental data is that as all risk sharing takes place through the experi-
mental risk sharing groups, the experiment rules out �ows of transfers as a consideration. In contrast, in
the Tanzania illustration I am not able to account for �ows of transfers, the potential for which has been
suggested by past work (De Weerdt and Dercon, 2006; Henderson and Alam, 2022). �is could in turn
reduce the radius of risk sharing found (a downward bias on the coe�cients for distance-s connections
and community co-members). Second, the experimental data have a clear causal ordering which does not
admit reverse causality. �is is not true of the Tanzania illustration. �ird, the experiment draws on data
from sessions in 70 di�erent municipalities. Using such data is an advantage because it gives multiple
‘draws’ from the distribution of potential networks. �is is compared to only one village covered by the
Tanzania data, which may or may not be typical when considering risk sharing networks, even among
similar villages. Moreover, it allows me to use session �xed e�ects to control for unobservable factors that
are correlated with geography.

A fourth advantage is that the experiment allows for considerable coordination before risk sharing
groups are formed, but allows participants to default on their group without being observed. �is means
that networks serve only to limit adverse selection, or asymmetric information about the type of people
you are sharing risk with, but not moral hazard, asymmetric information about the actions they take.5

4�is is expressed as excess probability of matching as it is in excess of session level �xed e�ects.
5�at is, the networks help in gathering information about what type of people one is joining a group with (i.e., adverse
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�is allows me to study the role of networks in risk sharing outside of considerations of monitoring.
Based on these features of the experiment, I argue that participants gather information about others in
the network before deciding to join the same risk sharing group: they are largely successful in avoiding
defaults, despite participant default being unobservable (A�anasio et al., 2012a).6 While I cannot isolate
the exact mechanisms, this process of gathering information may happen through introduction, (explicit
or implicit) endorsement, and the ability to talk and interact with other participants during the experiment.

�is paper makes three contributions to the literature, one of which derives from a unique robustness
check discussed below. First, this paper contributes to the literature on risk sharing among the poor. In
particular, the exercise helps to pin down—within this context—a potential radius of risk sharing. �is adds
value to a literature where models utilize radii of risk sharing which range anywhere from only supported
ties (Jackson et al., 2012) to the entirety of a village or administrative unit (Townsend, 1994). Work that
empirically explores radii of risk sharing beyond adjacent connections is scant, and is worth documenting
here. Dercon et al. (2006) and Lemay-Boucher (2012) document funeral insurance groups—formal, or some-
times quasi-formal groups that extend beyond ones immediate friends and family. De Weerdt and Dercon
(2006), within their analysis, show that distance-2 connections ma�er for non-food consumption smooth-
ing in Tanzania. Finally, Henderson and Alam (2022) study network structure in the same village network
in Tanzania, documenting that this network may be unusually good for sharing risk via intermediaries.7

�is work expands on those results. �e fact that community co-membership and distance-2 connections
ma�er for experimental risk sharing groups and distance-2 and 3 connections ma�er for transfers in Tanza-
nia implies a radius of risk sharing that extends beyond those adjacent in risk sharing networks. However,
the (sometimes) failure of distance-3 nodes to explain risk sharing participation as well as the erosion of
explanatory power over greater distances suggests that risk pools at a relatively more micro level than
the village. �us, one can think of a true radius of risk sharing in this se�ing (i.e., context, information
environment, etc.) as occurring at a meso-level. �ese results di�er from De Weerdt and Dercon (2006) as
they they do not test for the role of communities or the role of distance-3 connections in their analysis.
Empirically documenting this meso-level radius of risk sharing should direct researchers towards theoret-
ical approaches that model risk sharing at the sub-village level in groups and/or networks (e.g., Genicot
and Ray, 2003; Bloch et al., 2008; Ambrus et al., 2014). In contrast, these results do not support models
which treat components (connected subgraphs) as the radius of risk sharing (e.g., Bramoullé and Kranton,
2007).8

Second, it contributes to the broader social science literature on favor exchange in social networks. In
particular, I provide evidence consistent with the insight that people mobilize (i.e., ask favors of) their social
networks intuitively as opposed to deliberatively (Small and Sukhu, 2016). Such deliberative mobilization

selection), but do not help in gathering information about the actions they take—particularly defaulting on commitments (i.e.,
moral hazard).

6I argue they gather information and not simply trust because of the low incidence of defaults. While these portions of the
network may also be home to higher trust e.g., generated by social collateral, social collateral has no bite as defaults are not
reported to other group members.

7Other related empirical papers o�en study the formation of risk sharing networks, or do not study network structure that
extend beyond immediate friends and family.

8�e results here are also qualitatively a di�erent exercise than documenting the rate of risk sharing at various radii (e.g.,
Townsend, 1994; Kinnan, 2021), as I document the extensive margin, as opposed to the intensive margin conditional on a radius.

4



would include determining their needs and assessing their network before acting, as one is o�en asked to
do when responding to network surveys. �is helps explain the extension of risk sharing beyond direct
friends and family, a fact that might be at �rst counter-intuitive. Very o�en, improvements in measurement
simply make clear to the researcher what the respondents or participants of the study already understand.
For example, when we measure risk sharing networks (as opposed to studying villages), we elicit what
respondents already know about their networks. However, measurement using community detection and
distance-s connections o�en pairs people who are not aware that they lie within each other’s risk sharing
groups until the moment at which they must form them. In this way, study participants may not fully
appreciate the extent of their own risk sharing network.

I address several threats to validity. Most notably, networks in the Colombia illustration are sampled,
meaning that some nodes and their associated relationships are unobserved. Network sampling has been
shown to lead to measurement error in network statistics and bias in regressions with network statistics
(Smith and Moody, 2013; Chandrasekhar and Lewis, 2016). However, to my knowledge this is the �rst
study to address measurement error from node sampling in a dyadic regression framework.9 Speci�cally,
sampling could result in measurement error in the distance between participants in the friends and family
network, if their relationship is supported and if they are in the same detected community. To address this
threat to validity, I use a novel network sampling simulation. In these simulations, I keep only a random
subset of nodes from the network and their associated links. I then reconstruct relationships between
nodes in this sampled network and re-estimate my dyadic regressions of interest.

While I show that sampling does induce measurement error, dyadic relationships computed from sam-
pled data are both strongly correlated with their census counterparts and tend to produce similar dyadic
regression estimates. �e exception to this is detected communities, where coe�cients vary with sampling
in ‘unconditional’ dyadic regressions without controls for other measures of network structure. �ese re-
sults suggest that community detection uncovers closer relationships as fewer nodes are sampled. �is,
in turn, increases the magnitude of the association between detected communities and risk sharing in un-
conditional regressions. However, these same coe�cients are stable in the full ‘longer walks’ model—my
preferred speci�cation—where other forms of structure are controlled for (i.e., with distance-s connections
and support). �ese results suggest that my preferred speci�cation is robust, on average, to measurement
error from network sampling.

�e results are robust to a number of other empirical exercises. First, I repeat the Colombia analysis
using a close friends and family network (as is used in A�anasio et al., 2012a), which restricts friends or
family to those dyads living in geographically proximate dwellings. Second, I repeat the Tanzania anal-
ysis with alternative measures of risk sharing transfers to demonstrate those results are not sensitive to
choices in outcome construction.10 Given that I am using secondary data, I employ these two exercises
to demonstrate that the results are not sensitive to the alternative choices I made in construction of the
networks and outcomes. �ird, I include a ba�ery of measures of a�nity and di�erences between indi-

9�ere is also considerable work on cases where nodes are observed but some or all edges are unobserved (e.g., Breza et al.,
2020).

10When using reciprocal transfers, I do �nd that the size of associations fall and and distance-3 connections lose signi�cance
as might be expected with a more restrictive outcome. However, the pa�ern is otherwise quite similar.
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viduals that might drive co-participation in risk sharing. More speci�cally, I use the approach suggested
by Fafchamps and Gubert (2007), controlling for the dyadic sums and di�erences of baseline characteris-
tics. For the Colombia illustration these include income, education, risk preferences, age, as well as gender
controls, and whether the respondents live in an urban area, and in the Tanzania illustration, these in-
clude wealth, education, age, gender, religion, and clan. Fourth, I check the robustness of my preferred
speci�cations. I am estimating linear probability models (LPM) in order to include session �xed e�ects.
�erefore, I check that my predictions lie within the unit interval—a su�cient condition to avoid bias and
inconsistency with LPMs (Horrace and Oaxaca, 2006). For any speci�cation where this is not the case, I
re-estimate those speci�cations with logistic regression. None of these exercises meaningfully change the
pa�ern or interpretation of results.

�ese results are policy relevant. First, they are most obviously relevant for the �nancial health enjoyed
by those who participate in risk sharing networks. A larger radius ma�ers considerably for the quality
of insurance provided by informal groups and networks. Consider a simple income sharing arrangement
where people share some of their income in a group: paying into the pot if their luck is good and receiving
a payment if their luck is bad. �e larger the group one can share risk with, all else held equal, the lower
the variability of the income received—stabilizing the incomes of all involved in the arrangement. It is
increasingly common to ask about risk sharing in measures of �nancial health (e.g., Karlan and Brune,
2017). Second, access to new �nancial technology may have the unintended consequence of eroding—or
complementing—informal �nancial and economic relationships (e.g., Dupas et al., 2019; Dizon et al., 2019;
Banerjee et al., 2023). �ese results indicate that the costs—or the bene�ts—related to network change
might be greater than previously thought. �ird, understanding the radius of risk sharing can also improve
evaluation and design by improving our understanding of the radius of transactions. Transfers are o�en
considered as a component of policy design, particularly transactions which share the gains of treatment
(e.g., Janzen et al., 2018). If such spillovers are part of a targeting strategy (i.e., the person is poor, and
those they transfer to are also poor), understanding their radius may be of interest to those designing, as
a wider radius might erode the ability to target aid.

2 Background

2.1 Risk Sharing in Groups and Networks

To situate the results on the radius of risk sharing within the literature of risk sharing, I brie�y summarize
some literature on risk sharing in groups and networks. Early work on informal risk sharing focused
on the village as the relevant group with whom risk is shared (Townsend, 1994). Complete risk sharing
is a natural benchmark for the degree of risk sharing observed in villages.11 In contrast, studies of risk
sharing arrangements emphasize the social and economic relationships that serve to mediate risk sharing

11For example, Diamond (1967) models how contingent commodity markets can achieve optimal outcomes by completely
smoothing idiosyncratic risk. More precisely, if a risk sharing arrangement approximates complete contingent commodity mar-
kets in a village, Pareto optimal allocations of consumption are achieved by competitive equilibrium. In the absence of informa-
tion asymmetries or other market imperfections, informal risk sharing arrangements can be argued to resemble these contingent
commodity markets.
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ex post (Fafchamps and Lund, 2003; De Weerdt and Dercon, 2006; Collins et al., 2010). Notably, evidence of
information asymmetries and other imperfections in risk sharing arrangements abounds.12 However, the
radius and scale at which informal arrangements can work to share risk is still unclear.

�e simplest approach to the radius of risk sharing is to assume the only people who ma�er in one’s
network are those with one shares direct connections. Of course, evidence abounds that these connections
do ma�er (e.g., Fafchamps and Lund, 2003; De Weerdt and Dercon, 2006; Jack and Suri, 2014; Blumenstock
et al., 2016). However, the risk pool could extend beyond direct friends and family in several ways. In some
theoretical models, all members of a network component, a connected subgraph of the network, share risk
completely (Bramoullé and Kranton, 2007). In others, sharing is di�erentiated within the component by
their network distances. �e rationale for these higher distance connections may be because of network
dynamics (e.g., friends of friends may be introduced), or �ows on networks (e.g., a transfer from one person
to the next in�uences other transfers) (Belhaj and Deroı̈an, 2012; Bourlès et al., 2017).

In this vein, one could also use group memberships to explore risk sharing connections beyond direct
friends and family. Genicot and Ray (2003) explore the formation of such risk sharing groups with lim-
ited commitment. Groups which are stable (in the sense that they are self-enforcing) are bounded in size.
�e result of bounded size is mirrored empirically in Fitzsimons et al. (2018). Bloch et al. (2008) addresses
these network structures in the context of limited commitment, examining the stability of risk sharing
networks.13 In this case, networks must act as conduits for risk sharing transfers and also for information.
�e authors �nd that certain network structures facilitate the spread of information more than others,
which in turn makes punishment of reneging more e�ective. Finally, Ambrus et al. (2014) build a theoret-
ical model of the e�ect of network structure on ex post consumption risk sharing. �e authors �nd that
commonly observed network structures do not imply complete risk sharing. Moreover, they hypothesize
that in the case of incomplete risk sharing a�er the realization of shocks, risk sharing ‘islands’ will emerge
where consumption is smoothed, resulting in good local risk sharing. �ese islands tend to feature a dense
local network structure that is not well connected to other portions of the graph but is well connected
within the island. �erefore, risk sharing across islands is limited whereas risk sharing within islands is
complete.

2.2 Community Structure in Risk Sharing Networks

How do we make these larger structures legible within risk sharing networks? One approach would be to
use labeled (and therefore formal or quasi-formal) groups.14 While these groups are sometimes present,
labeled, and legible to an econometrician, this is not always the case. Another approach might be to search
for larger, complex features of networks. Generalizing from supported connections, one might consider
cliques of nodes, in which all members of the clique are connected to all other members. �ese are likely

12Many rationales have emerged to explain the failure of village economies to achieve complete risk sharing. �ese expla-
nations include (but are not limited to) hidden income and assets (Cabrales et al., 2003; Kinnan, 2021), moral hazard (Delpierre
et al., 2016; Jain, 2020; Kinnan, 2021), transaction costs (Jack and Suri, 2014), and limited commitment (Coate and Ravallion, 1993;
Ligon, 1998; Kinnan, 2021). All of these serve to place constraints on risk sharing.

13Notably these are exogenous networks for which stability is checked; this work does not explain the formation of the
networks themselves.

14For example, risk is sometimes shared explicitly in associations such as funeral insurance groups (Dercon et al., 2006).

7



related to risk sharing (e.g., Murgai et al., 2002). However, this leaves numerous questions unresolved: For
example, should one treat cliques including a greater number of people di�erently than those with fewer?
Likewise, what about an ‘almost-clique,’ missing just one relationship? Is it more natural to think of this
as two cliques, or would we expect the two unconnected agents who have many friends in common to
provide insurance for each other?

We may be able to sidestep these issues entirely by using community detection algorithms to simplify
the complex structure of networks (Newman, 2012). �ese algorithms seek to detect communities, or
dense subnetworks within a larger network. Such community detection methods have been used in many
contexts to identify the functional units within networks. Within the context of risk sharing networks,
communities might help identify people who are likely to share risk beyond direct friends and family.
Furthermore, these communities yield a principled approach to simplifying complex networks in ways
closely related to the theory of risk sharing in groups and networks. �ese densely connected groups
should allow for ample opportunities for the �ow of transfers and information. �ey also tend to accord
with economic theory. For example, Bloch et al. (2008) identify dense subgraphs as being stable under
various regimes for punishing those who renege.15 Communities also relate to the risk sharing islands seen
in Ambrus et al. (2014). In particular, while risk sharing islands are ex post constructs, they share features
with communities, including dense connections within the community or island, and few connections
outside of the community or island. In this way, one might think of communities as ex ante areas of
networks where one expects islands to form ex post.

Community structure is a latent feature of networks which must be uncovered using a community
detection algorithm. �e most common approach is to seek to maximize the modularity of detected com-
munities (Fortunato, 2010). �e intuition behind modularity is that it is maximized when there are dense
connections within communities and sparse connections between communities. Newman (2012) de�nes
modularity as follows: LetAij be the ijth entry of the adjacency matrix and Cij the ijth entry of the com-
munity co-membership matrix. Let di and dj be the degrees of nodes i and j, respectively, de�ned as the
number of connections they have in the network. Let m be the number of edges in the graph. Modularity
is expressed:

Q =
1

2m

n∑
i=1

n∑
j=1,j 6=i

(
Aij −

didj
2m

)
Cij (1)

To understand this statistic, consider a random graph as a counterfactual, where all pairs of nodes have
an equal probability of linking. In such a graph, the probability of a link between nodes i and j is equal
to didj/(2m − 1) ≈ didj/2m. If i and j are both high degree, it is more likely that they will be linked. I
then take the di�erence between actual links Aij and expected links didj/2m and weight this by if nodes
are in the same community. Finally, to express modularity, aggregate to the graph level and normalize by
twice the number of links present.

Directly maximizing modularity is a di�cult problem in large networks, so approaches instead depend
15In particular, they are stable under strong punishment (where the reneger is forced into autarky) and intermediate punish-

ments (where people within some radius of the reneged upon cut ties with the reneger). �is includes the complete graph or a
‘bridge’ graph (bridge graphs, a set of two small cliques connected by one bridging link, are highly relevant here as they provide
rationale for network structure that closely accords with community structure.)
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Figure 1: (a) Single session Colombia friends and family network with network distances and communities
overlaid. Here 0 is the origin node, 1 indicates the set of distance-1 connections, 2 indicates the set of
distance-2 connections, and so on. (b) Network support and detected communities overlaid in the same
session network. Here ‘O’ is the origin, ‘SN’ indicates their set of supported neighbors, and ‘US’ their set
of unsupported neighbors. Additionally, detected communities are represented by shaded regions in both
visualizations.

on approximation algorithms whose di�erences from direct maximization are bounded (Fortunato, 2010).
My approach to uncovering these latent structures is based on one of these approximation algorithms,
and uses random walks through the network. In this se�ing, a random walk moves from node-to-node
in the network by way of edges, randomly selecting the next node it visits among those in that nodes’
network. In particular, I use an algorithm proposed by Pons and Latapy (2005) and known as the Walktrap

algorithm that uses random walks to estimate node similarity. �e intuition for this method relies on the
idea that within tightly knit sections of the network random walks become ‘trapped’ in the local network.
Using a large number of random walks, the algorithm measures similarity between nodes and communities
based on where these random walks land. If the walkers from two nodes (or two communities) tend to
land on the same nodes, these two nodes can be thought of as close. I can then build communities using
adjacent sets of nodes by restricting to those edges where the pairs of nodes are close in this sense. In this
approximation algorithm, modularity serves as a validation tool to choose between possible community
assignments. When all links occur within the communities, this statistic will be at its highest, re�ecting a
modular community structure.

�e Walktrap algorithm proceeds as follows (Pons and Latapy, 2005):

1. Start with each node assigned into its own community. Compute distances for all adjacent commu-
nities in the network using random walks of length s (determined by the researcher).
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2. Merge the two adjacent communities with the lowest distance between them into one community.

3. Recompute and update the distances between communities.

4. Repeat steps 2 and 3 until all communities in a component have been merged into one community,
recording each potential community assignment along the way.

5. �is process yields a dendrogram, or a hierarchical diagram documenting the potential community
assignments from the algorithm and merges. I compare the modularity of all potential community
assignments, and choose the highest modularity.

Figure 1 presents the detected communities in a single session network. Figure 2(a) depicts a dendro-
gram from the same single session network, while Figure 2(b) depicts the modularity of each community
assignment. Appendix A.1 presents the formula for distance computations. Appendix A.2 explores the
importance of the length of walks. Additionally, in Appendix A.3 I visualize the potential community
assignment associated with each cut of the dendrogram.

While several algorithms might mirror the intuition of risk sharing, I �nd Walktrap to have compelling
features in this regard. In addition to mimicking the �ow of goods or information on networks, it may
generalize clustering in an interesting way. Suppose (against convention) one was limited to random walks
of length one. �is approach would consider nodes that featured common friends to be similar, correlating
highly with clustering (and therefore support). Walks of length two would imply those dyads with the
same friends of friends are similar. In this way, one can think of a supported relationship in a community
to not only have the bene�t of a common observer, but also to have a set of common observers at one step
removed (as is analyzed in Bloch et al., 2008). All additional details of the community detection algorithm
are included in Appendix A. Other algorithms, including the edge-betweenness based algorithm in Girvan
and Newman (2004), result in similar community assignments (see Appendix A.4 for a speci�c discussion
of the edge-betweenness algorithm).

3 Data and Context

3.1 �e Risk Sharing Experiment

�e data for the �rst illustration come from a laboratory experiment in Colombia and were obtained as
replication �les from A�anasio et al. (2012b).16 In addition to experimental behavior, the data features real-
world social networks and a rich set of demographic variables. In this section, I brie�y explain the risk
sharing experiment, sampling, and recruitment, as well as the real-world social networks survey measures.
�e experiment was conducted in 70 Colombian municipalities and elicited information about both risk
preferences and risk sharing groups in two rounds of play. �e �rst round of play consisted of a gamble
choice game. �is was followed by a luncheon where individuals were allowed to talk and form risk sharing

16Given concerns about replicability in modern economics, it is perhaps worthwhile to note that I am able to successfully
replicate the results of A�anasio et al. (2012a) in a push-bu�on replication. �is paper studied assortative matching on risk
preferences using this experimental data. While these results are closely related to those as they draw on the same data, to my
knowledge, the only directly replicated exercise in this paper (aside from data descriptions) is speci�cation (2) in Table F2.
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Figure 2: Walktrap Community Detection: (a) Dendrogram produced byWalktrap community detection for
the example session network above. �is plot visualizes the merges of nodes into communities according
to the Walktrap algorithm, with each merge providing a potential community assignment. �e colored
boxes represented the observed community detection where the dendrogram is cut. ‘Node ID’ refers to the
unique identi�er for each node. (b) I cut the dendrogram using a statistic called modularity. Modularity
is maximized at cut 14, so I cut the dendrogram for the observed community assignment. �e community
detection here is the same visualized in Figure 1

groups to share their winnings from a second gamble choice game. Finally, individuals played a second
gamble choice game and winnings were distributed according to the formed risk sharing groups.

�e �rst round of the risk sharing experiment consisted of a version of the Binswanger (1980) gamble
choice game. In this round the experimental participants chose one gamble from a list of six presented to
them. As can be seen in Table B1, these gambles increase in both expected value and variance of payouts.
While in the original study this was used as an indicator of risk aversion, here it serves purely to make
income random. A�er choosing their gamble, participants played the gamble of their choice and received
a voucher for their payout.

Round two of the experiment consisted of a second gamble choice game with the opportunity to pool
risk. �is time, before meeting with the experimenters, the participants were allowed to form risk shar-
ing groups in which winnings would be pooled and shared equally, which would be declared before the
second set of meetings took place.17 During the meetings, participants were given the chance to privately
withdraw from their groups a�er seeing the outcome of their gamble, a fact they were informed of before
forming groups. In this case, when they withdraw, they forfeit their share of the group earnings but do
not need to share any of their earnings with their former group. �e remaining group members would

17Participants were given around an hour to an hour and a half (during lunch) to form their groups.
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pool their gambles and share these equally. �us, each group member’s earnings depend on the size and
composition of the group a�er any withdrawal.

Of 122 municipalities surveyed to evaluate Colombia’s national cash transfer program Familias en
Acción, 70 municipalities were randomly drawn to participate in the experiment. About 60 households
from each municipality were invited to an experimental session in their municipality. Households were
selected from among families in the poorest sixth of the national population. Household members who
a�ended were largely female as transfers were speci�cally targeted toward women.

Networks were collected on the day of the experiment by asking each participant in the experiment
if they knew other participants and to clarify the nature of the relationship (family or friend). To the
degree the session network is not the network of interest, this data collection strategy yields an important
sampling issue for these networks, which I further explore in Section 5.4.1.

3.2 �e Nyakatoke Network Data

�e data for the second empirical illustration come from a detailed social network census in the community
of Nyakatoke in Tanzania and were obtained as replication �les from De Weerdt (2018). �e data is chosen
precisely because it is a census of households, which allows for an investigation of issues of network
sampling. �e data includes rich panel data on household consumption and shocks as well as risk sharing
transfers between all dyads in the network (De Weerdt, 2002). In addition, individuals are asked to list those
who they could personally rely on for assistance, which forms the risk (cross-sectional) sharing network
of interest.

3.3 Variable Construction

Nodes represent participants, and edges represent their direct relationships (e.g., if they are friends or
family).18 For a given network g, let N = {1, . . . , n} be the set of nodes and E = {ij} where i, j ∈ N
be the set of edges. �e relationships between actors are represented in an n × n real-valued adjacency
matrix A = A(g) where Aij = 1(ij ∈ E).19 In this representation, the adjacency matrix will be de�ned
symmetrically: Aij = Aji for all i, j ∈ N . �is means that I will treat networks as undirected.

3.3.1 Colombia Risk Sharing Experiment

Risk Sharing Groups �e outcome of interest is whether or not a dyad of individuals joined the same
experimental risk sharing group (even if they later reneged). Being in a risk sharing group with the other

18For readers seeking a refresher on network notation: A graph g = g(N,E) is a set of nodes,N , and an edgelist E containing
edges. Nodes are sometimes referred to as vertices and edges are o�en referred to as arcs, links, ties, or connections. In this article
I used relationships and connections to refer to a broader set of phenomena, as described below.

19Here, and throughout the text 1(.) denotes the indicator function,

1(condition) =
{

1, if condition is true
0, if condition is false . (2)
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member of the dyad is referred to as co-membership in the risk sharing group. Note that groups are non-
overlapping: each participant can only be in one group. Formally, for i ∈ Groupi and j ∈ Groupj , I de�ne
Groupij = 1(Groupi = Groupj).

Social Networks �e explanatory variables of interest are constructed from the network survey data.
I de�ne a network consisting of friends and family. Similar to the one in A�anasio et al. (2012a), this
network is undirected. �e network is unilaterally de�ned, meaning that if either respondent recognized
friendship or kinship, then the network features an undirected link there even when the other did not
reciprocally acknowledge that friendship or kinship.20 In contrast to A�anasio et al. (2012a), which used
only geographically proximate connections, the network is unrestricted by location.

3.3.2 �e Nyakatoke Network Data

Risk SharingTransfers �e outcomes for the Tanzania data are constructed from risk sharing transfers.
For each dyad, four measures of transfers are collected. Each member of the dyad is asked if they have
given to the other member or received from the other member of the dyad, leading to reports which are
sometimes discordant. �is phenomenon is evaluated for the same dataset in Comola and Fafchamps
(2017). Following their empirical results, which indicate there is likely under-reporting by one party when
responses are discordant, I de�ne an indicator variable for if any transfers are made within the dyad in
any round. I also construct two alternative outcomes based on the transfers, presented in Appendix B.2.

Risk Sharing Network For the Tanzania data, as opposed to friends and family, respondents are asked
“Can you give a list of people from inside or outside of Nyakatoke, who you can personally rely on for help
and/or that can rely on you for help in cash, kind or labour?” �e network di�ers from social networks
in that it is a direct elicitation of the risk sharing network. Comola and Fafchamps (2014) �nds that this
network is best understood as the result of household desire-to-link. A connection in this desire-to-link
network means one of the two respondents might want to ask for assistance in the future.21 I de�ne the
network to be undirected and unilateral as to create greater consistency with the Colombia illustration.

3.3.3 Dyadic Relationships

I start by forming an undirected and unweighted graph of the explanatory network, g. For Colombia, this
is the friends and family network, while in Tanzania, this is the risk sharing network. I say i and j are
connected (or ij ∈ g), if either i recognizes j in the explanatory network or j recognizes i. For a graph g, I
de�ne the adjacency matrix of direct connectionsAij(g) = 1(ij ∈ g). For distance-2 connections, I �nd all
respondents that can be reached in two steps but are not direct connections. Formally, I de�ne distance-2

20�is is not a statement about the network formation process itself, since I lack the data to test this using the replication data
(A�anasio et al., 2012b). For example, unilateral links (as they are reported within the data) might be so for a number of potential
reasons. In particular, given the underlying directed network data, I could estimate whether the data generating process is best
described by bilateral link formation, unilateral link formation, or desire-to-link as de�ned within Comola and Fafchamps (2014).

21�is is as opposed to unilateral or bilateral network formation, which require one or both members of the dyad to accede to
the link.
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connections as A2
ij = 1(min distance(i, j) = 2) where distance is the number of steps when traveling

over edges between the two nodes. Distance-3 connections are de�ned as any dyad with a shortest path
of three, such thatA3

ij = 1(min distance(i, j) = 3). Figure 1(a) plots distances from an origin node within
a network for a single session in the Colombia illustration. Finally, supported relationships are any dyad
where there is a link in the explanatory network where both dyad members share a common connection.
Formally, I de�ne supported connections as Sij = 1(ij ∈ g and ∃k such that ik, jk ∈ g). Figure 1(b) plots
the supported connections of an origin node within a network for a single session in the Colombia data

3.3.4 Detected Communities

In addition to the above network variables, I propose an additional candidate measure based on community
detection. Community detection splits households in the risk sharing network into discrete groups within
villages based on network structure of the friends and family network. Each respondent is assigned to
exactly one community, and all communities are composed of at least one respondent. Formally, for i ∈ Ci

and j ∈ Cj , I de�ne community co-membership as Cij = 1(Ci = Cj). Figure 1 plots communities
within a network for a single session in the Colombia data and Figure B1 plot communities in the Tanzania
Nyakatoke data.

3.4 Summary Statistics

3.4.1 Outcomes

Participation varied by experimental session in the Colombia illustration (A�anasio et al., 2012a). On
average, around 34 people a�ended each session, though this ranges from 9 to 87 participants in each
session, for a total of 2378 participants across 70 session. 86.9% of participants chose to join a risk sharing
group. �ese groups tended to be small, with an average of 4.6 members. Strategic default was relatively
rare: 6.4% of participants defected from their group a�er winning their second-round gamble. From the
perspective of dyadic relationships, about 10.6% of all dyads are within an experimental risk sharing group.
In the Tanzania illustration, about 14.6% of dyads featured some kind of transfers, meaning each respondent
household had made transfers with around 8.6 other households. Table B2 summarizes these outcomes.

3.4.2 Explanatory Networks

To describe overall network structure, details of the social network characteristics for the di�erent social
networks are presented in Table B3. A single session network from Colombia is visualized in Figure 1.
�e average respondent names about 3.5 friends or family members who a�end the session. �is yields
an average density of 0.056, meaning that of all potential connections (within the session), about 1 in 20
exist. �e village network from Tanzania is presented in Figure B1. Notably, the Nyakatoke network is
much larger than the average session network in Colombia, owing in part to the fact that it is a village
census. �is also relates to the average degree, or the number of (distance-1) connections each individual
or household has. In particular, one would expect to see higher degree in a large network, since each node
has more potential partners to name. Consistent with this intuition, I �nd an average degree of 8.2 in the
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Nyakatoke network compared to 3.5 in the Colombia network. Based on this, we know that both networks
are dense, in the sense that the rate of connection is su�cient so that most of the nodes are in a single
component (Achlioptas et al., 2009). As documented in Appendix B.3 these networks are also clustered
with short average path length.

3.4.3 Detected Communities

I detect communities using the Walktrap algorithm. A possible �rst step in using the algorithm is tuning
the number of steps used in random walks. However, as I don’t have a compelling reason to change
this parameter, I use the default of length four.22 For more on how walk length ma�ers for detected
communities, see Appendix A.2.

Results of community detection are presented alongside network characteristics in Table B3. In the
Colombia networks, I �nd communities of average size 4.5 and modularity of 0.44. While it is clear that
distance-s connections extend to a radius beyond direct friends and families, this larger scale of com-
munities vis a vis the risk sharing network suggests a larger radius as well. If we were to take detected
communities as the radius of risk sharing, they would provide more potential risk sharing partners than
would be available via direct connections (3.5), increasing the scale of risk sharing. Detected communities
are larger in the Tanzania illustration, re�ecting more interconnected network data. �ese communities
can be seen in Figure B1. I �nd communities of size 10.8 and modularity of 0.30. �ough modularity is not
directly comparable across di�erent network sizes, it is likely that lower modularity is partially explained
by lower density and clustering in this network. Communities provide an average additional 1.6 poten-
tial risk sharing partners relative to direct connections (9.8 as compared to 8.2). To further elucidate this
point and to explore what kind of network structure these detected communities are capturing, in the next
section, I summarize dyadic relationships within and between communities.

In Appendix B.4, I include a comparative analysis of community composition, identifying what factors
impact homophily across contexts and what factors lead to popularity (i.e., who �nds themselves in larger
communities). �is analysis is consistent with the idea that communities in the Colombia illustration
represent closer relationships than in the Tanzania illustration.

3.4.4 Dyadic Relationships

Summarizing dyadic relationships by community co-membership can help understand the network struc-
ture within communities and also the radius of risk sharing implied by these communities. Dyadic relation-
ships are summarized in Table 1. A similar number of dyads are within communities in the two networks:
19.2% of dyads are within communities in Tanzania, in comparison to 18.0% of dyads in Colombia. In both
networks, dyads within communities have closer relationships than those between communities, both in
terms of features like network distance and support. Nevertheless, detected communities would represent
a wider radius of risk sharing than direct connections. In Colombia, a plurality (45.2%) of dyads within
communities are distance-2 connections. Additionally, some dyads within communities were distance-3,

22In addition to removing researcher degrees of freedom which might lead to ‘cherry picking’ of results, this ensures consis-
tency across empirical illustrations to ease comparison.
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Table 1: Characterizing Dyadic Relationships by Community Co-Membership

Colombia Friends and Family Tanzania Nyakatoke
Comm. Co-Membership Comm. Co-Membership

Prop. Within Between All Dyads Within Between All Dyads
All Distance-1 43.1 3.1 10.3 20.7 3.7 7.0

Supported 34.9 1.9 7.9 17.5 2.8 5.6
Unsupported 8.2 1.2 2.4 3.2 0.9 1.4

Distance-2 45.2 19.3 24.0 56.5 33.6 38.0

Distance-3 10.9 22.8 20.6 22.6 52.8 47.0

Distance-4+ 0.8 54.8 45.1 0.2 9.9 8.1

Same Group(s) 15.4 10.2 11.2
Prop. Dyads 18.0 82.0 100.0 19.2 80.8 100.0

Notes: Dyadic relationship as a proportion of total dyads with the same community co-membership
status. ‘Within’ indicate nodes lie within one community while ‘between’ indicates the nodes in the dyad

lie in separate communities. Supported dyads are directly connected with at least one additional node
connected to both. Unsupported are connections with no other node connected to both.

and very few (less than 1%) are distance-4 or greater. Likewise, the majority of dyads within communities
in Tanzania (56.5%) are distance-2 connections. Comparing between Colombia and Tanzania, the closer
connections within communities in Colombia are consistent with the greater density and clustering in
these networks.

4 Empirical Strategy

To test the explanatory power of various measures of the radius of risk sharing, I use dyadic regression,
an econometric model of network formation. �is method is easily interpretable and ideal for a �rst cut at
understanding the radius of risk sharing. In these regressions, each pair of participants–whether connected
or unconnected within the network–is treated as an observation. My approach explicitly summarizes
broader network structure at the dyad level to be�er take account of the complex dynamics at play in
social networks.23

4.1 Simple Speci�cation

I start with a simple speci�cation that seeks to explain participation in risk sharing using connections in
the explanatory network. If some additional measure is to add value above direct connections, it should be
able to explain variation in participation in risk sharing. �e �rst set of estimates focuses on three kinds of
dyads: direct connections, supported connections, and co-membership in a detected community. A dyad

23To increase the kinds of network motifs I account for would mean estimating Subgraph Generation Models (Chandrasekhar
and Jackson, 2023). While such models would certainly add value, they are less easily interpretable models of network formation
than dyadic regression and would add considerable complexity to the analysis at hand.
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is de�ned as a direct connection if i or j recognize friendship or family ties. Second, this relationship
is supported if there is an additional respondent who is connected to both i and j. Finally, as the name
suggests, a pair of respondents are co-members in a detected community if both belong to the same detected
community (detailed descriptions of these variables are presented in section 3.3.) �e main speci�cation
is as follows:

Risk Sharingij = αv + β0Sij + β1Aij + γCij + εijv (3)

where Risk Sharingij measures if i and j joined a group together, αv is a session �xed e�ect, Aij is an
indicator equal to 1 if direct connection is present, Sij is an indicator equal to 1 if i and j have a supported
connection, and Cij is an indicator equal to 1 if i and j are in the same detected community. Starting from
the baseline that β1 > 0, we want to test β0 > 0 and γ > 0 conditional on the inclusion of Aij in the
regression. β0 > 0 implies supported connections are more likely to participate in risk sharing together.
Similarly, γ > 0 indicates that detected communities explain risk sharing.

4.2 Longer Walks: Increasing the Radius of Risk Sharing

While detected communities may be one way we see increased radius of risk sharing, it may be that
anyone within a speci�c radius is important for risk sharing. As depicted in Figure 1 and Table 1, there
is an imperfect overlap between community co-membership and those who are proximate in networks.
Here we care about distance in the network. To test this, I include dummies for those dyads who are 2
and 3 steps from each other. To test this, I include these indicators for ‘longer walks’ on their own as with
measures of support and community. �is speci�cation can be wri�en

Risk Sharingij = αv + β0Sij +
3∑

s=1

βsA
s
ij + γCij + εijv (4)

where As
ij = 1 indicates that the shortest path between i and j is of length s. Here, I further test whether

βs > 0 for s = 2, 3. Similar to the previous tests of γ, tests of βs might indicate that risk sharing extends
beyond direct connections. If rejected, these tests indicate that those further-�ung members in an individ-
ual’s social network are good candidates for sharing risk. However, since community co-membership and
distance are closely related, the correlation when accounting for this measure is likely more meaningful.
In terms of the magnitude of these e�ects, qualitatively, I would expect that closer dyads are more likely
to match, i.e., β1 > β2 > β3 > 0.

4.3 Fully Saturated Speci�cation

�ere is a great deal of heterogeneity in the dyads of respondents who are co-members in communities,
including the distance between dyad members and whether their relationship is supported by a third
respondent. �erefore, it may be interesting to examine detected communities in interaction with these
other measures. Moreover, this allows me to �exibly estimate excess probability of co-participation in risk
sharing conditional on dyad-level features. Extending the model above, I write a full speci�cation which
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includes interactions between support, friend and family ties, and community co-membership:

Risk Sharingij = αv + β0Sij +

3∑
s=1

βsA
s
ij + γCij + δ0SijCij +

3∑
s=1

δsA
s
ijCij + εijv. (5)

Here, I expect dyads within communities at a given distance are more likely to match than those dyads
between communities at the same distance. �at is, I test δs > 0 for s ∈ {0, 1, 2, 3}. In addition, excess
probability of co-membership can be estimated for each of nine dyad types (relative to dyads who are not
connected, supported, or co-community members).

Based on speci�cation 1, I specify a conditional expectation (net the constant or �xed e�ects):

E(Risk Sharingij |Sij , A
1
ij , A

1
ij , A

3
ij , Cij)− αv =

β0Sij +
3∑

s=1

βsA
s
ij + γCij+ δ0SijCij +

3∑
s=1

δsA
s
ijCij (6)

�ese expectations can be restated as sums of coe�cients from equation (6) (see Table C1).

4.4 Estimation, Standard Errors, and Robustness

In the Colombia illustration, I estimate the above speci�cations using linear probability models (LPM) in
order to employ session level �xed e�ects. To ensure my results are robust to this speci�cation choice, I
examine the distribution of predicted probabilities. Speci�cally, if the LPM predictions lie within the unit
interval, then estimates will not be biased by speci�cation choice (Horrace and Oaxaca, 2006). Additionally,
estimates from dyadic logistic regression are presented in Appendix D.5 as robustness checks. Based on
the structure of the Colombia data, I only include dyads that were in the same session. I correct for non-
independence of standard errors by clustering at the session level. For the Tanzania Nyakatoke Network
data, I correct for non-independence using dyadic-robust standard errors (Fafchamps and Gubert, 2007;
Cameron and Miller, 2014; Tabord-Meehan, 2019).24 For both illustrations, the standard errors are robust
to heteroskedasticity, which is of particular importance when estimating LPMs.

I perform a number of other exercises to assess the validity of results. I address network sampling
using a simulation approach. I re-estimate the Colombia illustration with a di�erent social network, made
up of geographically proximate friends and family. I re-estimate the Tanzania illustration with alternate
transfer outcomes. For both illustrations I include a large number of baseline characteristics as controls to
understand the robustness of the relationship identi�ed. All robustness checks can be found in Appendix D.

24While I might also use dyadic-robust standard errors for Colombia, cluster robust standard errors at a session level tends to
be more conservative.
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Table 2: Associations Between Dyadic Relationships and Group Co-Membership

Co-Membership in Risk Sharing Group
(1) (2) (3) (4) (5) (6) (7)

Supported 0.197∗∗∗ 0.0872∗∗∗ 0.0920∗∗∗
(10.15) (4.19) (4.52)

Distance-1 0.176∗∗∗ 0.0750∗∗∗ 0.193∗∗∗ 0.151∗∗∗ 0.0866∗∗∗
(11.02) (4.92) (12.00) (9.43) (4.81)

Distance-2 0.0388∗∗ 0.0187 0.0227
(3.27) (1.36) (1.63)

Distance-3 0.00661 0.0000469 0.00203
(0.64) (0.00) (0.18)

Same Community 0.115∗∗∗ 0.0583∗∗∗ 0.0527∗∗∗ 0.0488∗∗∗
(8.78) (5.71) (4.26) (4.09)

N Dyads 88266 88266 88266 88266 88266 88266 88266
Session FE Yes Yes Yes Yes Yes Yes Yes

Notes: Data is the Colombia friends and family network. Results based on 2378 participants in 70 sessions. All regressions
feature session level �xed e�ects, cluster robust standard errors at the session level, and no additional controls. t statistics in

parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

5 Results and Discussion

5.1 Social Network Structure and Experimental Risk Sharing in Colombia

5.1.1 Simplest Speci�cations: Support, Neighborhood, and Community

How well do these measures of the network explain co-membership in experimental risk sharing groups?
Focusing on the �rst four speci�cations reported in Table 2, supported friends or family, friends or family,
and community co-membership enter positively and signi�cantly (I always reject β0 = 0, β1 = 0, and
γ = 0 at the 99.9% con�dence level). However, the magnitudes of the estimates vary by speci�cation. In
particular, the three measures are strongly correlated, and may be picking up some overlapping informa-
tion about network structure. Among these speci�cations, I prefer to focus on column (4), which includes
all three variables. As I document in the robustness checks, speci�cations which are more inclusive tend
to feature a more stable coe�cient for community co-membership, so my preferred speci�cation will be
discussed in the next section. Here, being adjacent in the network is associated with a 7.5 percentage
point increase in the likelihood of joining the same risk sharing group, being in a supported relationship
is associated with a 8.7 percentage point increase in the likelihood of joining the same risk sharing group,
and being in the same community is associated with a 5.8 percentage point increase in the likelihood of
joining the same risk sharing group.

First, this pa�ern of results con�rms that those who are friends or family in social networks tend to pool

19



risk together (Fafchamps and Lund, 2003; Fafchamps and Gubert, 2007). Unsurprisingly, the results related
to distance-1 connections mirror those in A�anasio et al. (2012a), where they document that participants
join the same experimental risk sharing group if they are close (geographically proximate) friends or family.
Second, this reinforces that support drives risk sharing over and above network connections as might be
suggested by Murgai et al. (2002) or Jackson et al. (2012). Finally, we see that detected communities explain
risk sharing above and beyond these previously explored network measures.

5.1.2 Longer Walks: Distance-s Connections

While the measures included in the simple speci�cation seem to do well on their own and in concert, the
same is not true for distance-s connections. In speci�cation (5) of Table 2, distance-2 connections enter
signi�cantly (at the 99.9% con�dence level). However, the size of the association falls by roughly half with
the inclusion of community dummies in speci�cations (6) and (7). Distance-3 connections, however, enter
insigni�cantly across all speci�cations. I take column (7) as my preferred speci�cation for understanding
the association between community co-membership and co-membership in risk sharing groups. First, be-
cause the magnitude of the estimate falls as distance-2 and distance-3 connections are added, this is a more
conservative estimate of the association. Second, as I show in Section 5.4.1, the coe�cient on community
co-membership is relatively stable in this speci�cation as nodes are sampled. In this speci�cation, being
in the same community is associated with a 4.9 percentage point increase in the likelihood of joining the
same risk sharing group.

5.2 Risk Sharing Network Structure and Transfers in Tanzania

5.2.1 Simplest Speci�cations: Support, Neighborhood, and Community

Using the Tanzania data, I test how network structure explains participation in risk sharing transfers in
a real-world se�ing. Estimates of main results are presented in speci�cations (1)-(4) of Table 3. While
support, distance-1 connections, and community co-membership all enter signi�cantly when they are
the sole explanatory variable, support is highly a�enuated and insigni�cant when all three variables are
included together. Likewise, community co-membership is highly a�enuated, though still signi�cant (at
the 99% con�dence level). As before, the three variables are highly correlated, which may explain some of
the a�enuation. Focusing on speci�cation (4), I �nd being in the same community is associated with a 4.9
percentage point increase in engaging in any transfers, being adjacent in the network is associated with
a 63.0 percentage point increase in any transfers, and being in a supported relationship is associated with
an imprecisely estimated 8.1 percentage point increase in the probability of joining the same risk sharing
group.

5.2.2 Longer Walks: Distance-s Connections

While the main results are similar to those from the Colombia data, results diverge more dramatically
when I include distance-2 and distance-3 connections in the speci�cation. In the �nal three speci�cations
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Table 3: Associations Between Dyadic Relationships and Dyadic Transfers

Any Transfers Within Dyad
(1) (2) (3) (4) (5) (6) (7)

Supported 0.722∗∗∗ 0.0805 0.0861
(25.59) (1.38) (1.49)

Distance-1 0.714∗∗∗ 0.630∗∗∗ 0.787∗∗∗ 0.780∗∗∗ 0.712∗∗∗
(32.27) (13.80) (29.93) (28.17) (16.55)

Distance-2 0.141∗∗∗ 0.137∗∗∗ 0.138∗∗∗
(5.57) (5.45) (5.46)

Distance-3 0.0307∗∗∗ 0.0297∗∗∗ 0.0297∗∗∗
(7.10) (6.94) (6.95)

Same Community 0.167∗∗∗ 0.0487∗∗ 0.0125 0.0114
(6.97) (2.85) (0.83) (0.75)

N 14042 14042 14042 14042 14042 14042 14042
Notes: Data is the Tanzania Nyakatoke Network. Results based on 120 household respondents. t statistics in parentheses

constructed using dyadic-robust standard errors. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

in Table 3, distance-2 and 3 connections enter positively and signi�cantly with relatively similar magni-
tudes across speci�cations. Focusing on speci�cation (7) which includes supported, distance-1, 2, and 3
connections, and community co-membership, I �nd being a distance-2 connection is associated with a 13.8
percentage point increase in making any transfer, and being a distance-3 connection is associated with a
3.0 percentage point increase in making any transfer. Likewise, the correlation between community co-
membership and transfers is a�enuated when included with distance-2 and 3 connections. It appears that
social distance dominates who shares risk with whom in this village risk sharing network. One way to
understand this fact is to recall the underlying network and community structure. In particular, others
within communities are more distant in this illustration (see Table 1). In any case, it seemed that com-
munity detection is not able able to determine which distance-2 and 3 individuals were more relevant, as
opposed to in the Colombia illustration.

5.3 �e Radii of Risk Sharing

A saturated (i.e., fully interacted) regression speci�cation allows us to inspect participation in risk sharing
conditional on distance and community membership. In doing so, a picture of strong and weak ties in
these networks emerges—multiple radii of risk sharing. Using estimates from the fully interacted speci�-
cations, I construct conditional expectations of participation in risk sharing and plot these in Figure 3. �e
underlying calculations and estimates for these empirical speci�cations are presented in Tables C1 and C2,
respectively and are further discussed in Appendix C.

Turning to the Colombia illustration, visualized in Figure 3(a), I �nd that the shorter the distance be-
tween two respondents, the higher the probability of co-membership regardless of community status. As
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Figure 3: �e Radii of Risk Sharing in Colombia and Tanzania: Participation in risk sharing conditional on
dyadic relationship featuring estimates from from a fully interacted model. (a) Excess probability of co-
membership in risk sharing group in Colombia friends and family network. (b) Probability of any transfer
within dyad in Tanzania Nyakatoke network.

seen in previous regression results, distance-3 ties tell us li�le about the probability of co-membership,
whereas shorter distances are more informative. Not only does the probability of co-membership in a risk
sharing group tend to increase for dyads that are closer in terms of network distance, support, and com-
munity membership, but that community membership actually ampli�es these other factors. Ties within
detected communities are (weakly) be�er at explaining risk sharing group formation at every distance.25

In contrast to the Colombia results, the Tanzania results depict a much smaller role for communities
and network support to help detect strong and weak ties. Figure 3(b) shows a dramatic drop o� in the
probability of transfers as one moves beyond distance-1 connections, despite the ability of distance-2 and
3 connections to explain risk sharing in this context. �is pa�ern is similar when alternative measures of
transfers are used, as can be seen in Figure C1.

5.4 �reats to Validity and Limitations

5.4.1 Network Sampling and Measurement Error

�e Colombia illustration may face a unique form of measurement error, due to network sampling.26 If
the network observed among session members is not the salient network for the risk sharing experiment,
then network sampling will induce some measurement error around the distance between nodes and the
transitivity of connections (Smith and Moody, 2013). In the se�ing of dyadic regression, coe�cients on
distance-2, distance-3, and supported connections may be biased. In particular, distance-2 and 3 con-
nections may not be recorded if intermediate connections are not sampled or may be recorded as being
farther away from each other (e.g., distance-2 connections recorded as distance-3). Additionally, one may
miss supporting nodes due to network sampling. �is may lead to coe�cients on distance-2, 3, and sup-

25Weakly be�er in the sense that I cannot always reject the null hypothesis that the means are equivalent.
26While this is conceptually related to Chandrasekhar and Lewis (2016), the implications di�er due to the dyadic se�ing.
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Figure 4: Associations Between community co-membership and risk sharing from network sampling sim-
ulations. �e full model includes support, distance-s variables, and community co-membership. ‘Comm.
only’ includes community co-membership as the sole regressor. Horizontal lines (and 0% estimates) in-
dicate the estimate with no network sampling. 95% con�dence bands represent variation in coe�cients
from sampling. (a) Results from 5000 network sampling simulations with the Nyakatoke network data and
any transfer as an outcome. (b) Results of 500 network sampling simulations with the Colombia session
networks and risk sharing group co-membership as an outcome.

ported connections that are biased upward, or are upper bound estimates. It will also change the results of
community detection, though it is more di�cult to ascertain how community assignments might change
were these networks not sampled.

First, I argue that the e�ect of measurement error on my results may be lessened because the network
collected in the experimental session may be the salient network for group formation within that nar-
row activity. �at is, when assessing who to trust in forming experimental risk sharing groups, network
connections (even higher order ones like distance-2 connections) that are observable in the experimental
session come to the fore in the process of endorsement and information gathering. Even if this social net-
work is not the only network that is considered in forming risk sharing groups, the broader social network
will be incompletely remembered, while the within session network is directly observable.27 Furthermore,
no information can �ow through the network via those who did not a�end the session. Additionally, since
there is not scope for ex post enforcement of risk sharing, those who did not a�end do not impact the
group formation in this way (for example, by spreading the fact they defaulted). �erefore, I argue that

27�ere are important though limited examples where higher order network structure can be well recalled. See for example,
Banerjee et al. (2019) in which members with high di�usion centrality are identi�ed by asking who would be good at transmi�ing
information. Notably, knowing highly central members is much di�erent than knowing the relationships of less prominent
members within a village.

23



the salience of these within session network connections means the bias from network sampling should
be limited.

Second, to address the issue of network sampling within the experimental data, I simulate the process of
sampling to be�er understand the impact of this element on results from the dyadic regressions. �e simu-
lation proceeds as follows. In each network, I randomly sample respondent nodes (households/participants)
and keep only the network connections between those sampled nodes. I then proceed to generate a dyadic
dataset of the remaining nodes and check the correlation between dyadic variables constructed from the
subsampled dataset and their counterparts using the full sample available to me. Finally, I re-estimate
regressions and compare average estimated coe�cients to those estimated via the full samples.

I start with a simulation using the Tanzania Nyakatoke Network, as it forms a census of a single village.
�is simulation yields three insights. First, in samples of 25% and 50% of the nodes, I document (sometimes
quite strong) correlations between dyadic relationships computed from sampled data and their census
counterparts. Second, regression coe�cients tend to be stable for non-community measures of network
structure. �ird, it guides my interpretation of the estimated coe�cients on detected communities towards
full models. I present these estimates (as well as a those from sampling 75% of nodes) in Figure 4(a). In
particular, the association of detected communities with transfers tends to vary more with sampling than
other variables in the unconditional regressions. �e estimated associations between detected commu-
nities and transfers in the unconditional regression increase in magnitude as fewer nodes are sampled.
Detected communities tend to be smaller when detected using smaller networks and therefore proxy for
closer relationships as fewer nodes are sampled. �is interpretation is borne out by correlations between
sampled and census variables. However, in the full model, where close associations are accounted for by
the other measures of network structure, associations between communities and transfers are stable (if
insigni�cant).

I replicate these three insights in the Colombia friends and family networks. First, variables computed
in subsampled networks are highly correlated with their values in the session level data available to me.
Second, the regression coe�cients for supported distance-1, 2, and 3 connections are relatively stable with
regard to sampling, in both the unconditional and the conditional regressions. �ird, the association be-
tween communities and risk sharing group co-membership rises somewhat in the unconditional regression
as fewer nodes are sampled, but is stable in the longer walks model. Based on the results from the pre-
vious simulation exercise, I would expect the coe�cient to rise in these regressions as more nodes were
excluded. We see exactly this pa�ern in Figure 4(b). �is gives an obvious preference to the coe�cient
estimate from the longer walks model as compared to the unconditional model since these results do not
vary with sampling in either the �rst or second simulation. See Appendix D.1 for detailed methods and
additional results.

5.4.2 Close Friends and Family Network

I test for robustness to network de�nition in the Colombia illustration, using the close friends and family
network which is featured in A�anasio et al. (2012a). In this network, close friends and family are friends
and family who are also geographically proximate. I �nd the results are robust to this alternative network,
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though coe�cients are larger and somewhat noisier. See Appendix D.2 for detailed results.

5.4.3 Alternative Measures of Transfers and Flows on Networks

I test for the robustness of the outcome de�nition in the Tanzania illustration, using two alternative mea-
sures of transfers: if transfers were reciprocal and the total transfer value. I �nd that when reciprocal
transfers are used, there is a similar pa�ern of results in my main speci�cation. However, as this mea-
sure is more restrictive, the magnitude of estimates falls on distance-1 and 2 connections, and distance-3
connections are no longer associated with transfers (Table D7). Using total transfer value, we once again
�nd a similar pa�ern of results, with positive and signi�cant absolute transfer value for distance-2 and 3
connections, though with small magnitudes compared to direct connections (Table D8). Further discussion
of these results can be found in Section D.3.

One limitation of the Tanzania results is that they may not fully appreciate the radius of risk sharing if
transfers �ow through the network. For example, if a transfer from a distance-2 connection to a distance-
1 connection allows for another transfer to the origin node to take place, this would not be re�ected in
these estimates. In particular, Henderson and Alam (2022) suggest that this network is nearly optimally
structured for such �ows to ma�er in risk sharing, and indeed, De Weerdt and Dercon (2006) show that
distance-2 connections ma�er for smoothing non-food consumption, evidence that may be suggestive of
this point. Outside of the involvement of the intermediary, �ows of transfers are perfect substitutes for
direct transfers. If �ows of transfers are important, for purposes of understanding the radius of risk sharing,
�ows of transfers would positively bias the coe�cient on distance-1 connections, and would negatively
bias the coe�cients on distance-2 and 3 connections, and would likely negatively bias the coe�cient on
community co-membership (given that most people in the same community are indirect connections).
�is is an issue that deserves future a�ention, though not one I am able to address within the scope of this
paper.

5.4.4 Omitted Variable Bias

While this paper is descriptive in nature, it is instructive to assess omi�ed variable bias in order to under-
stand the robustness of the relationship identi�ed. For the Colombia illustration, there are two aspects of
the se�ing to take advantage of which lessen these concerns. First, since the risk sharing experiment was
conducted a�er real-world networks were realized, the results should not su�er from the possibility of
reverse causality.28 Second, while common shocks may play a role in both networks and group formation,
I am able to control for these in estimates using a �xed e�ects estimator. In particular, I include session
level �xed e�ects in all regressions in the Colombia example to control for session-invariant features of
group formation. �ese common shocks might include any variation in the execution of experimental
protocols during the experiments or geographic heterogeneity. �ese �xed e�ects alleviate some concerns
with omi�ed variable bias, particularly those factors that are correlated across municipalities.

28�is is not true of the Tanzania illustration. �e outcome in that illustration is transfers while the explanatory network
is a desire-to-link risk sharing network. While a such a risk sharing network precedes future transfers in the causal ordering,
transfers are retrospective. When queried who one would ask for assistance, they might recall previous transfers. �erefore, past
transfers (or non-transfers) may impact one’s future desire-to-link.
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To address concerns about omi�ed variable bias, I estimate all speci�cations from the main body of the
paper (as well as some presented only in the appendix) using a selection-on-observables approach, con-
trolling for dyadic characteristics that might drive co-participation in risk sharing. �e estimates broadly
accord with their counterparts in the main text. Appendix D.4 describes my variable selection approach
and presents estimates for both the Colombia and Tanzania illustrations.

5.4.5 LPM and Logistic Regression

I test for robustness to speci�cation choice, particularly the choice to estimate coe�cients using LPM.
First, to diagnose if we should expect bias or inconsistency in coe�cients due to this choice, I check the
predicted outcomes for my preferred speci�cations. In speci�cations without �xed e�ects, predictions
lie within the unit interval. �erefore, these speci�cations do not su�er from this speci�cation choice
(Horrace and Oaxaca, 2006). �is includes all speci�cations from the Tanzania illustration. However, I �nd
that when session �xed e�ects are employed, a small proportion of predictions lie outside the unit interval,
suggesting that LPM may be biased or inconsistent. To assess this in practical terms, I present results from
the LPM without session �xed e�ects and dyadic logistic regression for each of my preferred speci�cations
and compare marginal e�ects. I �nd that while marginal e�ects fall for my regressors of interest in both
LPM and logistic speci�cations without FE, when I include session �xed e�ects in my logistic speci�cation,
marginal e�ects are similar to those reported in LPM with �xed e�ects. �erefore, I stand by my use of
LPM with �xed e�ects as they play an important role in controlling for common shocks at the municipality
and session level. Full results of this analysis are presented in Appendix D.5.

5.4.6 Ecological Validity

All behavioral experiments will face some limitations due to ecological validity, and the Colombia illus-
tration is no di�erent (Berkowitz and Donnerstein, 1982). With that said, the experiment is well designed
to capture risk sharing as if in the real world. �e experiment is framed within existing pa�erns of risk
sharing in the context. �e experiment takes place close to where respondents live, with other members of
their community—likely risk sharing partners. Groups are formed in a familiar social se�ing. �e gambles
and risk sharing games are played for real stakes: the safest gamble amounts to an expected value of about
21.2% of average daily household income in the sample; the riskiest gamble 42.4%.

5.5 Discussion

5.5.1 Meso-Level Risk Sharing

Taken together, the results start to tell a story of ‘meso-level’ risk sharing. If the most macro-level risk
sharing occurs at the village level (or the session level) and the most micro-level risk sharing occurs with
those adjacent in the network, the results here are at an intermediate level. Risk sharing falls far short of
the diameter, or the longest minimum distance between two nodes of the largest components. However, it
extends beyond those adjacent in the network. �ose who are close are preferred as risk sharing partners—
perhaps because they are be�er known—but there is some tolerance for network distance. Moreover, in
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the group formation experiment, community co-membership does well in explaining participation in risk
sharing among connections of distance-2. �is suggests that these community detection tools may be
useful in bounding the radius of risk sharing when groups are loosely de�ned or illegible to outsiders. �is
broader radius of risk sharing implies that households may be be�er equipped to smooth consumption
than we would otherwise have imagined.

5.5.2 Group Formation, Trust, and Adverse Selection in Colombia

Why should network structure (and community structure in particular) ma�er in the Colombia risk sharing
experiment? Unlike the limited commitment frame which drives Ambrus et al. (2014) and Bloch et al.
(2008), the experiment disallows ex post observation of default, making extrinsic motivation di�cult to
implement (i.e., the severing of links to punish the o�ender) (A�anasio et al., 2012a).29 Despite this fact,
the rate of strategic default is quite low (6.4%), suggesting that people tend to succeed in matching with
trustworthy alters. �erefore, I interpret these results as driven by the search for trustworthy risk sharing
group members. While ex ante welfare (i.e., expected utility) should rise in group size when there is no
threat of default, it may fall when those who are not trustworthy enter the group.

Social trust is low in Colombia at the time of the experiment, but not extinct. In particular, in data from
the World Values Survey, only 16% of men and 12% of women responded that most people can be trusted
(Sudarsky, 2018).30 �is low trust environment motivates my interpretation: those who are unknown via
the network will not be trusted, unless more information can be gathered during the luncheon. �at is, they
are mistrusted until they are known, a�er which they may be trusted or distrusted. In this case, the network
itself can serve to gather information about others in the network (e.g., through implicit endorsement) in
addition to introductions and explicit endorsement. �e relevant network for this information gathering
activity is the one that is present on the day of the experiment because (1) it is salient and (2) the structure
of the broader network is only imperfectly understood by participants.

Additionally, in such a low trust environment, consent to enter risk sharing groups should serve as a
key feature of the group formation process, meaning that group members should have veto power over
others joining in their group.31 I appeal to an early model of coalition formation where simultaneous an-
nouncements are made (Hart and Kurz, 1983; Bloch and Du�a, 2011). In a simultaneous announcement
game where participants cannot coordinate, one might worry about sparse coalitions. However, the ex-
periment gives both considerable time for coordination and makes the need to coordinate salient, allowing
for participants to coordinate their responses in such a game (A�anasio et al., 2012a).

29Technically, the model in Ambrus et al. (2014) need not be limited commitment, but the set-up might be implied by such a
model.

30In particular, this is in response to the general trust question, “Generally speaking, would you say that most people can be
trusted or that you need to be very careful in dealing with people?”

31Consider a model with open group formation (free entry and exit), where those who are not trustworthy take part in the
game. �ose who are not trustworthy will default if their income is less than the expected average income of the group. However,
if is known there are dishonest types in the group, the gains to sharing risk fall for trustworthy types. �is pushes out trustworthy
types, thereby decreasing the realization at which dishonest types will default, leading to an overall collapse in the group.
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5.5.3 Comparing Empirical Illustrations

Why do the results from Tanzania di�er vis a vis the risk sharing experiment? In particular, while the
formation of risk sharing groups was well explained by community co-membership, in the results from
Tanzania, communities are crowded out by distance-2 and 3 connections. While I may not be able to pin
down an exact answer to this question, several mechanisms may play a role: sampling, the explanatory
networks, outcomes, and the role of asymmetric information in that illustration, and cultural and environ-
mental factors more broadly.

1. Network Sampling: While the Nyakatoke networks are a village census of households, the Colom-
bia sessions are a sample of individuals. While I argue that in Colombia I observe the network ties
most salient to the decision to form groups, if this is not the case it could be that the communities
detected in sampled networks may contain di�erent information than those in census networks.
I explore this technical explanation in more depth using simulation results (see Section 5.4.1 and
Appendix D.1). In particular, as fewer nodes are sampled, communities proxy for closer dyadic re-
lationships. However, coe�cients are stable when controlling for other forms of network structure.
Even in these speci�cations, results di�er. �is suggests we should look elsewhere to explain di�er-
ences in these two contexts.

2. Outcomes: Risk sharing outcomes do not match one-to-one across these two illustrations. While in
Colombia experimental risk sharing groups are the outcome of interest, in Tanzania I observe dyadic
transfers instead. One reason that this might ma�er is that experimental risk sharing groups are by
nature non-overlapping, as are the community detection methods we use. Consider a node on the
edge of two risk sharing groups, who must choose only one. Community structure may predict their
choice because it captures those nodes they have stronger connections to. �is is not the case with
dyadic transfers, where one could make transfers with both would-be risk sharing groups. Another
reason this may ma�er is the potential for transfers to �ow over networks, something which the
Colombia experiment rules out. As is discussed in Section 5.4.3, this may lead to downward bias on
the coe�cients for indirect relationships.

3. ExplanatoryNetworks: �e networks di�er in what they capture. While the Colombia experiment
captured social networks (friends and family), the Tanzania data captures an ex ante risk sharing
network directly.32 In particular, Comola and Fafchamps (2014) shows that the Nyakatoke network is
best explained within a desire-to-link framework, meaning it represents not the risk sharing network
per se, but instead represents those whom one might ask in the future given the risk sharing network.
It might be interesting to see if detected communities based on other social network ties predict such
desire-to-link risk sharing networks in this data or in other contexts.

4. Information Environment Working with the Tanzania Nyakatoke data, I do not have the same
precision with which to understand risk sharing transfers as a function of asymmetric informa-

32I.e., it is based on responses to the question “Can you give a list of people from inside or outside of Nyakatoke, who you can
personally rely on for help and/or that can rely on you for help in cash, kind or labour?”

28



tion. While (adverse) selection into networks plays a role, moral hazard (and related punishment
strategies) will play a role as well. In particular, the ability to punish others ex post and the relative
density of the Nyakatoke network may mean that capturing community structure is less relevant. If
risk sharing relationships are self-enforcing contracts, simply cu�ing ties or informing others may
be enough to punish someone who reneges (Coate and Ravallion, 1993; Bloch et al., 2008). Further-
more, many rounds of punishment may have already taken place, and may impact the explanatory
network we now observe.

5. Cultural and Environmental Factors Of course, given that the two datasets are chosen for their
network properties, they are drawn from di�erent populations which are quite di�erent in terms
of the environmental and cultural context that they are embedded in. For example, the Nyakatoke
network has relatively low clustering compared to what tends to be reported in networks (Henderson
and Alam, 2022). �is departs from other known favor networks (e.g., Jackson et al., 2012, which
documents such structure in Indian villages).

�e fact that the outcome, information environment, and explanatory network di�er should not be un-
derstated. Indeed, the fact that results do not extend to the Tanzania illustration suggest an interesting
direction for future work. Intermediate illustrations might provide some sense of what exactly communi-
ties capture in the Colombia illustration that helps them explain risk sharing behavior.

5.5.4 Additional Analyses

I include two additional analyses in the Appendix which are not for purposes of robustness, but that add
richness to the set of results for those readers who may be interested. First in Appendix E I add insurance
group co-co-membership to the slate of predictors in the Tanzania illustration to understand their role
in risk sharing transfers. Second, in Appendix F I study the relationship between various measures of
network density and defaults in the Colombia illustration.

6 Conclusion

Using dyadic regression, I test explanatory power of measures of network structure in explaining ex-
perimental risk-sharing outcomes. In doing this, I uncover how the radius of risk sharing depends on
network structure. �is allows me to correlate likely measures of risk sharing networks and groups with
‘ground-truth’ measures of risk sharing. Of the dyadic measures tested, three tend to be particularly useful
in understanding the radius of risk sharing in the group formation experiment: direct connections, sup-
ported connections, and co-membership in detected communities. �e third of these measures relies on
community detection, a method novel in application to risk sharing. In addition, distance-2 connections
sometimes explain co-membership in experimental risk sharing groups, though these estimates are not as
strong or stable as the other three. In contrast, not all of these results extend to the Tanzania Nyakatoke
data. In my preferred speci�cation, distance-2 and 3 connections crowd out co-membership in detected
communities and supported connections also lose their explanatory power.
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Both sets of results point toward risk sharing that takes place at a level between the village (session)
level and bilateral level. �is �nding might guide how we think about the welfare derived from informal
risk sharing. For example, one should be wary of any welfare calculations done under the assumption
that all members of a village share risk. On the other hand, models that assume only bilateral risk sharing
may be conservative in this regard. When considering the literature on risk sharing, theoretical models
that allow for this kind of ‘meso-level’ risk sharing become more intriguing, such as the work by Genicot
and Ray (2003), Bloch et al. (2008), and Ambrus et al. (2014), among others. Still, more work is needed
to understand how community detection might provide value across contexts which might vary by the
form of risk sharing (groups or bilateral), the type of network used, the information environment, the
explanatory network, and more. For example, communities might be used as the relevant group in con-
sumption smoothing risk sharing regressions (like those seen in De Weerdt and Dercon, 2006; Kinnan,
2021) to understand the relevance of this network structure when transfers might �ow through networks.

New questions arise from community detection. If detected communities bound the radius of risk
sharing, it becomes interesting how these communities are composed relative to those adjacent in the
network. In particular, it is o�en the case that network formation is guided by homophily, or the principle
that ‘birds of a feather �ock together’ (McPherson et al., 2001). Such homophily plays a strong role in
risk-sharing networks in particular (Fafchamps and Gubert, 2007; A�anasio et al., 2012a; Barr et al., 2012).
Are communities homophilous to the same degree as direct friends and family? Interesting applications of
communities include the study of assortative matching on risk preferences (Putman, 2020). Finally, while
risk sharing is an exciting application of community detection, it may prove valuable for other places where
social networks are relevant to the provision of goods. �estions still remain for the use of network science
to understand risk sharing in networks. Where empirical tools match imperfectly with theory, clarifying
the links between empirical and theoretical modeling of these phenomena will be crucial.

References

D. Achlioptas, R. M. D’Souza, and J. Spencer. Explosive Percolation in Random Networks. Science, 358
(3186):2000–2002, 2009. ISSN 1095-9203. doi: 10.1126/science.1167373.

A. Ambrus, M. Mobius, and A. Szeidl. Consumption Risk-sharing in Social Networks. American Economic
Review, 104(1):149–182, 2014. doi: 10.1257/aer.104.1.149.

O. A�anasio, A. Barr, J. C. Cardenas, G. Genicot, and C. Meghir. Risk pooling, risk preferences, and social
networks. American Economic Journal: Applied Economics, 4(2):134–167, 2012a. doi: 10.1257/app.4.2.134.

O. A�anasio, A. Barr, J. C. Cardenas, G. Genicot, and C. Meghir. Replication data for: Risk Pooling, Risk
Preferences, and Social Networks, 2012b.

A. Banerjee, A. G. Chandrasekhar, E. Du�o, and M. O. Jackson. Using Gossips to Spread Information:
�eory and Evidence from Two Randomized Controlled Trials. Review of Economic Studies, 86(6):2453–
2490, 2019. ISSN 1467937X. doi: 10.1093/restud/rdz008.

A. Banerjee, E. Breza, A. G. Chandrasekhar, E. Du�o, M. O. Jackson, and C. Kinnan. Changes in Social
Network Structure in Response to Exposure to Formal Credit Markets. Review of Economic Studies, 2023.
doi: doi:10.1093/restud/rdad065.

A. V. Banerjee and E. Du�o. �e Economic Lives of the Poor. Journal of Economic Perspectives, 21(1):
141–168, 2007. ISSN 0895-3309. doi: 10.2139/ssrn.942062.

30



A. Barr, M. Dekker, and M. Fafchamps. Who shares risk with whom under di�erent enforcement mecha-
nisms? Economic Development and Cultural Change, 60(4):677–706, 2012. doi: 10.1086/665599.

M. Belhaj and F. Deroı̈an. Risk taking under heterogenous revenue sharing. Journal of Development Eco-
nomics, 98(2):192–202, 2012. doi: 10.1016/j.jdeveco.2011.07.003.

L. Berkowitz and E. Donnerstein. External Validity Is More �an Skin Deep. American Psychologist, 37(3):
245–257, 1982.

H. P. Binswanger. A�itudes toward Risk: Experimental Measurement In Rural India. American Journal of
Agricultural Economics, 62(3):395–407, 1980.

F. Bloch and B. Du�a. Formation of networks and coalitions. In Handbook of Social Economics, volume 1,
pages 729–779. 2011.

F. Bloch, G. Genicot, and D. Ray. Informal insurance in social networks. Journal of Economic �eory, 143:
36–58, 2008. doi: 10.1016/j.jet.2008.01.008.

J. E. Blumenstock, N. Eagle, and M. Fafchamps. Airtime transfers and mobile communications: Evidence
in the a�ermath of natural disasters. Journal of Development Economics, 120:157–181, 2016. doi: 10.1016/
j.jdeveco.2016.01.003.
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A Community Detection

A.1 Distances

�e Walktrap algorithm computes the similarity of nodes and communities using random walks. A random
walker starts at a node i and moves to an adjacent node with probability equal to 1/di where di is the
degree of i. �is is repeated for s steps and the landing node k is recorded. For a given number of steps s
(determined by the researcher), the distance between nodes i and j is de�ned (Pons and Latapy, 2005):

rij(s) =

√√√√ n∑
k=1

(P s
ik − P s

jk)2

dk
. (1)

P s
ik is the probability that a walk starting at node i ends its walk on node k. �e distance overall can be

thought of as the L2 distance between P s
ik and P s

jk. Dividing by the degree of the receiving node helps
control for the fact that these nodes will receive more random walks than others. Intuitively, nodes that
send walkers to the same places in the network are close.

Building on this de�nition, they also de�ne the distance between communities:

rC1,C2(s) =

√√√√ n∑
k=1

(P s
C1,k
− P s

C2,k
)2

dk
. (2)

In this case, at the start of each random walk, the source within the community is drawn randomly and
uniformly from members of that community:

P s
C,k =

1

|C|
∑
i∈C

P s
ik. (3)

A.2 Length of RandomWalks for Walktrap

Performance (as measured by modularity) and community size di�er by walk length. For the Colombia
data, modularity is relatively static with respect to path length. However, I �nd that walks of length two
return communities with average size 3.93, whereas longer walks tend to return slightly larger commu-
nities on average. For example, walks of length �ve would return communities of size 4.65. When used
on the close friends and family networks, I see both smaller average community size and higher average
modularity. For the Tanzania data, both community size and modularity depend more dramatically on
the length of walks. Modularity increases with walk length as walks increase from length two to �ve.
Likewise, community size increases from 4.96 to 13.22 members.

A.3 Example of Walktrap Algorithm Merges

I depict the process of the Walktrap algorithm in Figures A1, A2, and A3. Each network depicts a potential
community assignment, were the dendrogram cut at that step of the algorithm. While this is just one
example, in Figure A1 the �rst merges tend to be within the largest eventual communities and occur in
supported relationships. �e last few cuts in A3 (15-18) correspond to declines in modularity.
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Cut at 2. Modularity = −0.031
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Cut at 4. Modularity = 0.059
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Cut at 5. Modularity = 0.099
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Figure A1: Walktrap cuts 2-5: Single session Colombia friends and family network. Node color indicates
potential community assignments at each cut of the dendrogram, with the associated modularity printed
at top. Nodes marked with their ID.
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Cut at 6. Modularity = 0.161
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Cut at 7. Modularity = 0.197
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Cut at 8. Modularity = 0.226
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Cut at 9. Modularity = 0.265
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Figure A2: Walktrap cuts 6-9: Single session Colombia friends and family network. Node color indicates
potential community assignments at each cut of the dendrogram, with the associated modularity printed
at top. Nodes marked with their ID.
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Cut at 10. Modularity = 0.304
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Cut at 11. Modularity = 0.352
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Cut at 12. Modularity = 0.378
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Cut at 13. Modularity = 0.414
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Cut at 14. Modularity = 0.463
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Cut at 15. Modularity = 0.418
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Cut at 16. Modularity = 0.414

703
713

707

702

722

708

712

719

706

705

717

711

716

720

710

721

714

718

723

704

725

724

Cut at 17. Modularity = 0.145
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Cut at 18. Modularity = 0
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Figure A3: Walktrap cuts 10-18: Single session Colombia friends and family network. Node color indicates
potential community assignments at each cut of the dendrogram, with the associated modularity printed
at top. Nodes marked with their ID.

A.4 Edge Betweenness Community Detection

An alternative approach to community detection is called edge betweenness, and utilizes the algorithm from
Girvan and Newman (2004). �is algorithm uses the counts of shortest paths on edges in the network
between nodes to split up the network. What does this mean, exactly? To compute edge betweenness we
�nd the shortest path in the network between every pair of nodes. Using these paths, we count the number
of paths that lie on a given edge in the network. If there are multiple shortest paths of equal length, partial
credit is awarded, 1/2 for two paths, 1/3 for three, etc. �e intuition is that these edges would carry a
high load in a risk sharing arrangement. Conversely, information could be controlled across these edges,
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(a) Walktrap Algorithm
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(b) Edge Betweenness

Figure A4: �e di�erence in community detection in one session network by algorithm.

making monitoring or learning about others’ reputation hard (for this reason betweenness is sometimes
called “brokerage” centrality).

�e algorithm proceeds as follows:

1. Compute edge betweenness for all edges

2. Find the edge with the highest betweenness, and remove it from the network

3. Recalculate betweenness for all edges that remain

4. Repeat until all edges have been removed

�is leaves us with a set of potential community assignments based on network components (connected
subgraphs). Every time the network is split into multiple components, this is a potential community as-
signment. As in the Walktrap algorithm, these are compared using modularity, and the assignment with
the highest modularity is selected.

�e community assignments produced by edge betweenness are similar to those from Walktrap. Com-
munity co-membership between the two methods is highly correlated (Pearson r = 0.72) and both are
about equally correlated with co-membership in an experimental risk sharing group. For example, see
Figure A4 which plots community detection in one session. We can see that assignments are the same
except one community which is split in two. �is speci�c session is more highly correlated than average,
but is shown for consistency with the main text (Pearson r = 0.92). Edge betweenness features similar
average modularity: averaging a score of 0.43 as compared to 0.44 from Walktrap.
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B Data Appendix

B.1 �e Risk Sharing Game Incentive Structure

Le�ing ` ∈ {1, . . . , 6} be an individual’s type, earnings are equal to mean income from the gamble choice
game. Neglecting withdrawal from the group, expected income from joining these risk sharing groups will
be

E(y) =
6∑

`=1

q` × E(y`) (1)

where q` is the proportion of individuals who chose ` in the risk sharing group and E(y`) is the expected
income of gamble `. Likewise, the standard error of earnings will be SD(ȳ) =

√
V ar(ȳ), where

V ar(ȳ) =
1

NG

6∑
`=1

q2` × V ar(y`) (2)

and NG is group size. In the case where withdrawal is possible, it is rational for an individual to withdraw
from the risk sharing group if their revealed income exceeds the expected income.

Table B1: Incentive Structure for the Gamble Choice Game

Payo�
Gamble Low High Expected Value Standard Deviation

1 (safest) 3000 3000 3000 0

2 2700 5700 4200 2121

3 2400 7200 4800 3394

4 1800 9000 5400 5091

5 1000 11000 6000 7071

6 (riskiest) 0 12000 6000 8485
All amounts in Colombian pesos. Each gamble has a 50% probability of a low draw and a
50% probability of a high draw.

B.2 Alternative Measures of Risk Sharing Transfers

�e outcomes for the Tanzania data are constructed from risk sharing transfers. For each dyad, four mea-
sures of transfers are collected. Each member of the dyad is asked if they have given to the other member
or received from the other member of the dyad, leading to reports which are sometimes discordant. �is
phenomenon is evaluated for the same dataset in Comola and Fafchamps (2017). Following their empirical
results, which indicate there is likely under-reporting by one party when responses are discordant, I take
the maximum reported �ow from i to j and from j to i in each of the �ve rounds of data collection. �en I
de�ne three measures of transfers. �e �rst outcome I de�ne out of this data is an indicator variable for if
any transfers are made within the dyad in any round, the main outcome reported in the analysis from the
main text. Second, I de�ne an indicator variable for if these transfers were reciprocal. �at is, if there was
a transfer from i to j in some round and one from j to i in some (possibly other) round. �ird, I de�ne total
transfers as the sum of all transfers in either direction across all rounds (reported in TZS). About 14.6% of
dyads have made any transfers, though only 5.6% reciprocally. �e average total transfers within dyad are
326.8 TZS, though this �gure rises to 2238.4 TZS when considering only the 14.6% of dyads where transfers
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Table B2: Summary of Dyadic Outcomes

Colombia Obs Mean/Prop Std. Dev. Min Max
Risk Sharing Group Co-Membership (% Dyads) 88,266 10.6 30.8 0 1

Tanzania Obs Mean/Prop Std. Dev. Min Max
Any Transfer (% Dyads) 7,021 14.6 35.3 0 1
Reciprocal Transfers (% Dyads) 7,021 5.6 23.1 0 1
Total Transfers (TZS) 7,021 326.8 1888.5 0 51650

are made.

B.3 Network Summary

More details of overall network structure can be found in Table B3. Here I will summarize a number of
network statistics, including density, clustering, and closeness.

1. Density is another measure of how how much social connection exists in a network and is computed
by dividing the total number of connections by the maximum possible number of connections. In
Colombia, the average density of the friends and family network is 0.056, indicating that of all po-
tential connections (within the session), only about 1 in 20 exist. Despite higher average degree, the
Nyakatoke network is less dense, 0.035, indicating about 1 in 30 potential connections exist.

2. �e clustering coe�cient measures the transitivity of social connection. �is is computed by dividing
the number of closed triplets of nodes by the number of all triplets, open or closed, where a triplet is
a connected set of three nodes.33 �e Colombia networks feature an average clustering coe�cient
of 0.346. �is indicates that network connections are transitive about one third of the time. �e
Nyakatoke network features a lower clustering coe�cient of 0.188.

3. Closeness measures the inverse of the average network distance between nodes. Higher values indi-
cate closer networks while lower values indicate more distant networks. Closeness in the Colombia
networks is 0.55, suggesting one can think of the average distance between nodes in a randomly cho-
sen dyad (within one session) to be around 1.8 steps in these networks.34 In the Nyakatoke network,
closeness is 0.436 indicating an average distance of 2.3 steps for a given dyad.

When compared to the friends and family network, the close friends and family networks are consid-
erably less dense at the session level, but feature higher clustering coe�cients. �is is not unsurprising
considering classic measures of bonding and bridging social capital. �at is, we would expect more bonding
(as opposed to bridging) relationships in the close friends and family networks relative to the unrestricted
networks, where bonding is associated with support (Jackson et al., 2012).

33More formally, clustering coe�cient answers the question: if ij and ik exists in the network what is the probability that jk
is in the network as well?

34More precisely, closeness is computed by taking the average of the inverse of shortest path distance for nodes in the network.
�is particular de�nition is chosen to handle nodes in di�erent components. When nodes are not in the same component, the
shortest distance is o�en taken to be in�nite, which would be problematic for any measure of distance. �erefore, I take closeness
to be 0 as a convention. A value of closeness approaching one suggests that nodes are are rarely more than a step away from
each other, on average. As closeness approaches zero, nodes are very far, or more likely in separate components.
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Figure B1: Nyakatoke Risk Sharing Network with Communities Overlaid. Detected communities are rep-
resented by both shaded regions and node color.
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Table B3: Characteristics of Networks and Detected Communities

Colombia Tanzania
Statistic Friends and Family Close Friends and Family Nyakatoke Network

Nodes 33.971 33.971 119
(11.954) (11.954) -

Edges 65.057 32.057 490
(62.517) (41.165) -

(Average) Degree 3.520 1.677 8.235
(2.477) (1.483) (4.991)

Density 0.056 0.026 0.035
(0.044) (0.022) -

Clustering 0.336 0.425 0.188
(0.202) (0.301) -

Closeness 0.547 0.742 0.436
(0.169) (0.162) -

Number of Communities 11.457 18.100 11
(7.152) (7.791) -

Community Size 4.515 2.134 10.818
(3.511) (1.018) -

Modularity 0.44 0.59 0.30
(0.17) (0.20) -

Standard errors in parentheses. For Colombia, both means and standard errors computed from session level statistics.
For Tanzania, means and standard errors computed on the node level.
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B.4 Interpretation and Comparison of Communities

It is interesting and important to understand what detected communities represent in the two empiri-
cal contexts. Approaches for doing so tend to explore either the network structure of communities or
the a�ributes of nodes or relationships in these communities (Labatut and Balasque, 2012). I explore the
network structure between and with communities elsewhere but I will brie�y summarize those �ndings,
before focusing on the a�ributes of nodes.

Table B3 presents the average number and size of communities in both contexts. We see that while
there are similar numbers of communities per network, the size of these communities is much larger in the
Tanzania Nyakatoke Network. Speci�cally, the average community is 10.8 nodes as a opposed to 4.5 in the
Colombia Friends and Family network. Consistent with these �ndings, Table 1 shows that relationships
found within communities are closer within communities as opposed to between communities, and that
relationships within the Colombia Friends and Family Network are closer vis a vis the Tanzania Nyakatoke
Network.

Turning to node a�ributes, I analyze homophily and popularity in the communities, and for reference,
the explanatory networks. While other approaches exist, in keeping with the methods presented in the
main text, I will deploy dyadic regression. To make the analysis comparable across contexts, I am limited to
three sociodemographic variables found in both contexts: age, education level, and consumption. It could
of course be the case that variables omi�ed here (clan, religion, etc.) drive matching in these contexts.

I regress the network of interest on functions of these covariates which measure how socially close or
distant the members of the dyad are. In these regressions I include an indicator for whether respondents
have the same level of education (and whether this is high or low level of low education), the absolute
di�erence and sum of age, and the absolute di�erence and sum of log consumption. For Tanzania, I have
only the level of education completed as opposed to years of education, therefore I generate level of edu-
cation for Colombia. Since the end of primary school is a key stopping point for education in both context,
I collapse education to two levels, depending on whether respondents �nished primary school. To make
consumption comparable, I convert to $PPP/month. �en I take the log of consumption and the absolute
di�erence and sum of these values in the dyad.

�e results for Colombia and Tanzania are presented in Tables B4 and B5, respectively. �ere is overall
li�le evidence of homophily or di�erences in popularity across age, education and consumption at least
when considering signi�cant di�erences in matching associated with these factors. �is may be a question
of noise as much as signal, e�ects need to be quite large compared to the outcome mean to gain signi�cance
when using robust standard error estimates.

Table B4 documents homophily in age in both the Colombia friends and family network as well as
the community network. A twenty-�ve year di�erence in age is associated with a 2.3 percentage point
reduction in the probability of being in the same detected community. We also see some homophily by
education, at least among high education respondents. Both members of the dyad being high education is
associated with a 1.9 percentage point increase in the probability of being in the same detected community.
While insigni�cant, there is also a negative association between the community network and the absolute
di�erences in log consumption. Table B5 documents a signi�cant association between age and popularity
in the risk sharing network. An additional 25 years in the sum of age is associated with a 2.0 percentage
point increase in the probability of matching. It is consistent with the notion that communities measure
closer relationships in Colombia (and in sampled data more generally) that evidence of homophily is found
there and not as consistently in the Tanzania data. In other places, while not signi�cant, the results are
sometimes consistent across illustrations. In particular, the coe�cient on the sum of age is and both having
a high education level are both positive for all four networks.
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Table B4: Assortative Matching in Colombia Social Networks and Communities

(1) (2)
Friends and Family Network Community

Age Sum 0.000216 0.000530
(1.13) (1.47)

Age Di�. -0.00122∗∗∗ -0.000903∗∗
(-5.34) (-2.71)

Both High Ed. 0.00251 0.0188∗
(0.38) (2.02)

Both Low Ed. 0.00979 0.0109
(1.75) (0.92)

Sum Log Cons. -0.00344 -0.00448
(-0.59) (-0.42)

Di�. Log Cons. 0.00327 0.00191
(0.66) (0.21)

Constant 0.134 0.192
(1.81) (1.43)

Outcome Mean 0.103 0.180
N 88266 88266
t statistics from cluster robust standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table B5: Assortative Matching in Tanzania Risk Sharing Networks and Communities

(1) (2)
Risk Sharing Network Community

Age Sum 0.000800∗ 0.000910
(2.54) (1.04)

Age Di� -0.000603 0.00101
(-1.55) (1.46)

Both High Ed. 0.00704 0.0456
(0.79) (1.10)

Both Low Ed. -0.00375 -0.00283
(-0.27) (-0.08)

Sum Log Cons. 0.0208 -0.0116
(1.60) (-0.35)

Di�. Log Cons. -0.0151 0.0207
(-1.33) (0.60)

Constant -0.110 0.147
(-1.21) (0.68)

Outcome Mean 0.0697 0.192
N 11556 11556
t statistics from dyadic robust standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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C Conditional Expectations by Dyadic Relationship

�is section details the estimation of these conditional expectations, which are discussed in Section 5.3 and
plo�ed in Figures 3 and C1. I estimate the empirical analogue of this conditional expectation and present
the results in Table C2 (speci�cally, these estimates are the underlying estimates for Figures 3 and C1). In
contrast to the Colombia results, transfers outcomes depict a much smaller role for communities. Further-
more C1(a)-(b) show a dramatic drop o� as one moves beyond distance-1 connections, despite the ability
of distance-2 connections to explain risk sharing.

Table C1: Expectation of Risk Sharing Conditional on Dyadic Relationship

Community Co-Membership
Dyadic Relationship Within Community Between Communities
Distance-1

Supported β0 + β1 + γ + δ0 + δ1 β0 + β1

Unsupported β1 + γ + δ1 β1

Distance-2 β2 + γ + δ2 β2

Distance-3 β3 + γ + δ3 β3

Distance-4+ γ 0
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Figure C1: �e Radii of Risk Sharing in Tanzania: Participation in risk sharing conditional on dyadic re-
lationship featuring estimates from from a fully interacted model. (a) Probability of reciprocal transfer
within dyad in Tanzania Nyakatoke network. (b) Total value of transfers within dyad in Tanzania Nyaka-
toke network.
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Table C2: Estimating Conditional Expectations: Fully Interacted Speci�cations sans Controls

Colombia Tanzania Transfers
Same Group Any Recip. Total

(1) (2) (3) (4)
Supported (β̂0) 0.0339 0.0679 -0.00967 1356.7∗

(1.45) (0.76) (-0.10) (2.07)

Distance-1 (β̂1) 0.0813∗∗∗ 0.713∗∗∗ 0.465∗∗∗ 1941.4∗∗∗
(4.19) (11.61) (5.80) (5.88)

Distance-2 (β̂2) 0.0244 0.140∗∗∗ 0.0318∗∗∗ 160.9∗∗∗
(1.80) (5.66) (3.37) (4.34)

Distance-3 (β̂3) 0.00518 0.0293∗∗∗ -0.0000 33.06∗∗∗
(0.45) (6.68) (-0.00) (3.37)

Same Community (γ̂) 0.0187 0.0163 0.00271 7.136
(0.45) (0.87) (0.50) (0.35)

Supported × Same Community (δ̂0) 0.0699∗ 0.0311 0.0870 -3197.4∗
(2.12) (0.32) (0.77) (-2.11)

Distance-1 × Same Community (δ̂1) 0.0386 -0.00797 0.0372 2993.2
(0.82) (-0.10) (0.33) (1.93)

Distance-2 × Same Community (δ̂2) 0.0232 -0.0122 0.00443 32.93
(0.53) (-0.54) (0.34) (0.70)

Distance-3 × Same Communitya (δ̂3) -0.00436
(-0.10)

N 88266 14042 14042 14042
Session FE Yes No No No
SEs Sessionb Dyadicc Dyadicc Dyadicc

t statistics in parentheses
a Omi�ed in Tanzania speci�cations due to perfect multicollinearity.
b Indicates cluster robust standard errors clustered at the session level.
c Indicates that SEs are dyadic-robust standard errors.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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D Robustness Checks

D.1 Sampled Networks: Simulation and Results

D.1.1 Tanzania Nyakatoke Network

Since the Tanzania Nyakatoke Network is a village census, I use this data to explore the role of network
sampling and resulting measurement error in dyadic relationships. Using this data I randomly sample a
proportion of the nodes and keep only the network connections between those households. I then pro-
cess the data as I would to construct dyadic relationships from the sampled network: support, distance-1,
distance-2, distance-3, and community co-membership, and computed using only information from the
sampled nodes and their connections. I do two simulations, keeping approximately 25% and 50% of nodes,
as dynamics of network sampling might feature some non-linearity (Chandrasekhar and Lewis, 2016). For
each simulation, I re-sample the networks 5000 times. As in Smith and Moody (2013), I assume nodes are
missing at random.

While nodes might be missing at random, I argue that those who did a�end the session should tend
to be more central within networks. For example, those municipality members who are more gregarious
or socially minded might both have more friends and be more likely to a�end events, compared to their
more isolated peers. �is turns out to be an advantage with regards to network sampling. Smith et al.
(2017) stresses the centrality of missing nodes. When lower centrality nodes are removed, closeness is
more robust to missing nodes, which translates into more accurate measurement of distance within the
network (i.e., distance-1 and 2 connections).

Table D1: Average Correlations Between Dyadic Relationships in Sampled Nyakatoke Network and Full
Network

Census Network
Sampled Network Support Distance-1 Distance-2 Distance-3 Same Comm.

Panel A: 60 Household Samples (≈ 50%)
Supported 0.83 0.74 −0.16 −0.19 0.22
Distance-1 0.89 1.00 −0.22 −0.26 0.26
Distance-2 −0.13 −0.15 0.69 −0.51 0.16
Distance-3 −0.18 −0.20 −0.20 0.41 −0.05
Same Community 0.38 0.40 0.10 −0.24 0.31

Panel B: 30 Household Samples (≈ 25%)
Support 0.63 0.57 −0.13 −0.15 0.18
Distance-1 0.89 1.00 −0.22 −0.26 0.26
Distance-2 −0.09 −0.10 0.47 −0.35 0.12
Distance-3 −0.10 −0.11 0.00 0.12 0.02
Same Community 0.50 0.56 0.04 −0.27 0.25

To assess the degree of measurement error, I �rst check the correlation between dyadic relationships
from the sampled network and those from the census network. When 50% of nodes remain, dyadic relation-
ships are strongly correlated with their census counterparts (Table D1). Aside from distance-1 connections,
which are not subject to measurement error in this case (Graham, 2020), supported connections feature the
highest correlation of 0.83, followed by distance-2 connections (0.69), distance-3 connections (0.41), and
co-community membership (0.31). Even when only 25% of nodes remain, dyadic relationships from the
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sampled networks are correlated to their census counterparts. However, the average correlation falls at
di�erent rates. Intuitively, the further the connection is, the more the correlation collapses moving to the
25% sample. For example, while the average correlation for distance-3 connections falls to 26% of its pre-
vious value, those for support and community co-membership fall much less (75 and 80% of their previous
value, respectively).

Next, I estimate several regressions with (any) transfers as the dependent variable and record the co-
e�cients. I include results from four speci�cations with the following independent variables: (1) only
support, (2) only community co-membership, (3) distance-1, 2 and 3 connections as independent variables,
and (4) all of the aforementioned variables. Tables D2 and D3 report the average regression coe�cients in
50% and 25% samples, respectively. In general, I see quantitatively small di�erences between the average
regression coe�cients and the census estimates. However, a notable counter example is detected commu-
nity co-membership. Considering single regression, the average coe�cient rises as the sample becomes
smaller. While the census estimate is 0.167, the average estimate when 50% is sampled is 0.267 and 0.358
when 25% is sampled. My interpretation of this fact is that community detection is picking up more closely
connected dyads as fewer nodes are sampled, consistent with correlations found in Table D1. For example,
as fewer nodes are sampled detected communities are more correlated with supported nodes and less cor-
related with distance-2 nodes. Additionally, it is worth discussing the fact that the average coe�cient on
community detection is negative in the 25% sample when controls are included. �is seems to be related
more closely to the fact that communities do not explain transfers more than anything else, as the estimate
is only 0.03 di�erent that the census estimate, and would not be signi�cantly di�erent than zero. In terms
of noise, regression coe�cients are not particularly noisy in the 50% samples, with SDs tending to be small
in percentage point terms. However, as I move to a 25% sample, SDs increase by approximately a factor of
two.

Finally, one important point is that in the smaller samples, not all dyadic relationships feature variation,
a fact which is re�ected in the ‘N de�ned’ column of Tables D2 and D3. For example, in 5.7% of cases in
the 25% simulation, nodes were selected in such a way that no supported connections existed. In some
cases, a coe�cient is also unde�ned because of perfect multicollinearity with other regressors. Where a
variable is degenerate, simulations are also omi�ed in the correlation tables for that variable.

Table D2: Summary of Regression Coe�cients (Outcome: Any Transfer) for 60 Household (≈ 50%) Sample
of Nyakatoke Network

Coe�cient Model N De�ned Census Est. Mean Coef. St. Dev.

Supported Support Only 5,000 0.722 0.717 0.051
Distance 1 Distance Only 5,000 0.787 0.760 0.037
Distance 2 Distance Only 5,000 0.141 0.131 0.035
Distance 3 Distance Only 5,000 0.031 0.035 0.017
Same Comm. Comm. Only 5,000 0.167 0.267 0.063
Supported Full 5,000 0.086 0.058 0.077
Distance 1 Full 5,000 0.712 0.723 0.054
Distance 2 Full 5,000 0.138 0.129 0.037
Distance 3 Full 5,000 0.030 0.035 0.017
Same Comm. Full 5,000 0.011 0.005 0.035
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Table D3: Summary of Regression Coe�cients (Outcome: Any Transfer) for 30 Household (≈ 25%) Sample
of Nyakatoke Network

Coe�cient Model N De�ned Census Est. Mean Coef. St. Dev.

Supported Support Only 4,713 0.722 0.711 0.147
Distance-1 Distance Only 5,000 0.787 0.736 0.077
Distance-2 Distance Only 5,000 0.141 0.113 0.073
Distance-3 Distance Only 4,998 0.031 0.037 0.054
Same Comm. Comm. Only 5,000 0.167 0.358 0.091
Supported Full 4,713 0.086 0.050 0.175
Distance-1 Full 5,000 0.712 0.732 0.116
Distance-2 Full 5,000 0.138 0.120 0.088
Distance-3 Full 4,998 0.030 0.039 0.060
Same Comm. Full 4,990 0.011 −0.019 0.092

D.1.2 Colombia Session Networks

I repeat the analysis above for the Colombia session networks, this time further sampling these already
sampled networks. Again, I �rst check the correlation between dyadic relationships from the sampled net-
work and those from the census network. When 50% of nodes remain, dyadic relationships are strongly
correlated with their census counterparts (Table D4). Aside from distance-1 connections, supported con-
nections feature the highest correlation of approximately 1, followed by distance-2 connections (0.82),
co-community membership (0.59), and distance-3 connections (0.48), and . Even when only 25% of nodes
remain, dyadic relationships from the sampled networks are correlated to their census counterparts.

Table D4: Average Correlations Between Dyadic Relationships in Colombia Session Networks and Sampled
Subnetwork

Session Network
Sampled Network Support Distance-1 Distance-2 Distance-3 Same Comm.

Panel A: 50% Samples
Support 1.00 0.86 0.43 0.28 0.47
Distance-1 0.86 1.00 0.32 0.30 0.51
Distance-2 −0.16 −0.19 0.82 0.45 0.23
Distance-3 −0.15 −0.17 −0.35 0.48 −0.11
Same Community 0.55 0.63 0.45 0.35 0.59

Panel B: 25% Samples
Support 1.00 0.86 0.43 0.27 0.47
Distance-1 0.86 1.00 0.32 0.29 0.50
Distance-2 −0.16 −0.19 0.82 0.45 0.23
Distance-3 −0.15 −0.17 −0.35 0.48 −0.11
Same Community 0.65 0.76 0.41 0.32 0.52

Next, I estimate several regressions with risk sharing group co-membership as the dependent variable
and record the coe�cients. As before, I include results from four speci�cations with the following indepen-
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dent variables: (1) only support, (2) only community co-membership, (3) distance-1, 2 and 3 connections as
independent variables, and (4) all of the aforementioned variables. Table D5 reports the average regression
coe�cients in 50% and 25% samples. Again, for support and distance-s connections, I see quantitatively
small di�erences between the average regression coe�cients and the session level estimates. In the uni-
variate regression, as before, the coe�cient on same community rises slightly with sampling.35 While the
census estimate is 0.115, the average estimate when 50% are sampled is 0.132 and 0.152 when 25% of nodes
are sampled. �is follows the same logic as above, that community detection is picking up more closely
connected dyads as fewer nodes are sampled. However, when considering the full model, the coe�cient
on same community only changes very slightly, from 0.049 to approximately 0.048 in the 50% sample and
the 25% sample.

Table D5: Summary of Regression Coe�cients for Samples of Colombia Session Networks

Coe�cient Estimates
50% Subsample 25% Subsample

Coe�cient Model Session Mean St. Dev. Mean St. Dev.

Support Support 0.197 0.199 0.016 0.202 0.034
Distance-1 Distance 0.193 0.195 0.015 0.197 0.031
Distance-2 Distance 0.039 0.040 0.009 0.040 0.020
Distance-3 Distance 0.007 0.008 0.007 0.007 0.017
Same Community Comm. 0.115 0.132 0.014 0.152 0.028
Support Full 0.092 0.100 0.025 0.108 0.057
Distance-1 Full 0.087 0.082 0.023 0.076 0.056
Distance-2 Full 0.023 0.030 0.010 0.035 0.020
Distance-3 Full 0.002 0.007 0.007 0.008 0.017
Same Community Full 0.049 0.048 0.015 0.048 0.036

35�is seems to be smaller relative to the presented coe�cient size, but this is probably due to the fact that we are sampling
a�er sampling has already taken place, meaning we are not adjusting the degree of sampling as much.
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D.2 Close Friends and Family Network

�e network used in A�anasio et al. (2012a) di�ers in that it is restricted to only close friends and family,
where closeness is de�ned via geographic proximity. Using this network, I re-estimate the main speci�ca-
tions and those related to distance-2 and 3 connections. As can be seen in Table D6, the main speci�cations
are broadly similar. Coe�cient estimates are a bit larger and noisier, owing to the sparser nature of the
close friends and family network.

Table D6: �e E�ects Dyadic Relationships on Group Co-Membership: Colombia Close Friends and Family
Network sans Controls

Co-Membership in Risk Sharing Group
(1) (2) (3) (4) (5) (6) (7)

Supported 0.240∗∗∗ 0.0916∗∗ 0.0815
(8.67) (2.80) (1.92)

Distance-1 0.215∗∗∗ 0.0897∗∗∗ 0.191∗∗∗ 0.158∗∗∗ 0.101∗∗∗
(9.90) (4.52) (8.38) (8.68) (3.98)

Distance-2 0.0670∗∗∗ 0.0437∗∗∗ 0.0220
(5.49) (3.46) (1.23)

Distance-3 -0.0233 -0.0356 -0.0320
(-1.39) (-1.74) (-1.62)

Same Community 0.156∗∗∗ 0.0702∗∗∗ 0.0652∗ 0.0762∗
(8.52) (4.13) (2.27) (2.42)

N 88266 88266 88266 88266 88266 88266 88266
Session FE Yes Yes Yes Yes Yes Yes Yes
t statistics in parentheses constructed from session level cluster robust standard errors
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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D.3 Alternative Measures of Transfer Outcomes

To test the robustness of the results, I estimate additional models using alternative transfer outcomes.
Using the Tanzania sample, I estimate results for a several outcome de�nitions, namely if transfers were
reciprocal within the dyad and total transfers within the dyad. For reciprocal transfers, results are very
similar to transfers overall, except that I observe a slightly smaller radius of risk sharing, with distance-
3 nodes entering insigni�cantly. Considering total transfers, results are again similar, though may be
interesting to readers who want to understand the intensity of risk sharing in this network.

D.3.1 Reciprocal Transfers

Reciprocal transfers may be interesting because these dyads are more dependable when need is great-
est.36 For the main speci�cations, results using reciprocal transfers as the outcome are very similar to the
outcomes for any transfers. However, associations are lower in magnitude than those for any transfers
owing to the restriction in outcome (see Table D7, speci�cations 1-4). In contrast to any transfers, I see a
smaller radius for reciprocal transfers. In particular, distance-3 connections do not enter signi�cantly here.
I also see that distance-2 and 3 connections crowd out co-community membership in explaining transfers,
though community transfers do be�er here than in explaining any transfers (i.e., in terms of t-statistic) (see
Table D7, speci�cations 5-7). Finally, conditional on the di�erences already reported, the role of groups
in reciprocal transfers is close to expected. �ey help explain reciprocal transfers, feature some di�er-
ence in information from communities. However, in this case, they are crowded out by distance-2 and 3
connections (see Table E2). Knowing the central role these groups do play in risk sharing, this suggests
that whatever their merits I may be somewhat under-powered when analyzing reciprocal transfers given
multicollinearity in regressors.

Table D7: E�ects of Dyadic Relationships on Reciprocal Transfers: Tanzania Nyakatoke Network sans
Controls

Reciprocal Transfers Within Dyad
(1) (2) (3) (4) (5) (6) (7)

Supported 0.510∗∗∗ 0.0442 0.0457
(11.67) (0.60) (0.62)

Distance-1 0.508∗∗∗ 0.461∗∗∗ 0.522∗∗∗ 0.511∗∗∗ 0.474∗∗∗
(13.98) (8.09) (13.48) (13.42) (8.06)

Distance-2 0.0338∗∗∗ 0.0284∗∗ 0.0286∗∗
(3.39) (3.06) (3.09)

Distance-3 0.000222 -0.00146 -0.00141
(0.07) (-0.43) (-0.41)

Same Community 0.113∗∗∗ 0.0282∗ 0.0193 0.0187
(6.00) (2.41) (1.74) (1.72)

N 14042 14042 14042 14042 14042 14042 14042
t statistics in parentheses constructed using dyadic-robust standard errors
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

36For example Blumenstock et al. (2016) show the role of reciprocity driving transfers in response to an earthquake in Rwanda.
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D.3.2 Total Transfers

Total transfers allow me to go beyond extensive measures of risk sharing to understand the intensity of
risk sharing. �ese results deserve some a�ention here. I �nd that distance-1 connections dominate risk
sharing when total transfers are used as the outcome. Distance-1 connections are associated with a 3163
TZS increase in the total amount of transfers within the dyad over the �ve rounds of data collection (Ta-
ble D8, speci�cations 1-4). Community co-membership is associated with a 122.9 TZS increase in total
transfers, though this is only signi�cant at the 10% level. Again, as distance-2 and distance-3 connections
are included, these enter signi�cantly and tend to crowd out detected communities (Table D8, speci�ca-
tions 5-7). Finally, conditional on the di�erences already reported, groups tend to play a small role in
transfer size (Table E3). In fact, in terms of statistical signi�cance groups are only robust to community
co-membership. It may be the case that while groups determine risk sharing networks, they do not have
additional explanatory power beyond that when it comes to the intensity of private transfers.

Table D8: E�ects of Dyadic Relationships on Total Transfers: Tanzania Nyakatoke Network sans Controls

Total Transfers Within Dyad
(1) (2) (3) (4) (5) (6) (7)

Supported 3046.3∗∗∗ -123.8 -117.5
(8.49) (-0.15) (-0.15)

Distance-1 3113.3∗∗∗ 3163.0∗∗∗ 3200.6∗∗∗ 3155.7∗∗∗ 3249.4∗∗∗
(8.18) (3.83) (8.13) (8.33) (3.92)

Distance-2 172.3∗∗∗ 150.0∗∗∗ 149.6∗∗∗
(4.12) (3.75) (3.71)

Distance-3 33.68∗∗∗ 26.74∗∗∗ 26.61∗∗∗
(3.58) (3.39) (3.42)

Same Community 641.6∗∗∗ 122.9 79.62 81.07
(4.92) (1.69) (1.18) (1.11)

N 14042 14042 14042 14042 14042 14042 14042
t statistics in parentheses constructed from dyadic-robust standard errors
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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D.4 Estimation with Selection-on-Observables Approach

Networks are interesting because they are the source of many strategic interactions. When the incentives
for network formation rely on many interrelated strategic factors, isolating the causal e�ect of speci�c
network structure may be di�cult. �erefore, rather than arguing that a speci�c network structure causes
co-membership in risk sharing groups, I opt to inform the reader of what assumptions are necessary to
credibly interpret the estimates as causal. In particular, even a�er accounting for the factors detailed below,
it could still be the case that the social network structure and risk sharing membership are the result of
unobservable di�erences in dyad level relationships. �us, a reader would need to believe that I have
accounted for the universe of possible factors in order to satisfy conditional unconfoundedness for the
following estimates to be taken as causal. To this end, I do account for a ba�ery of potential sources of
omi�ed variable bias from three broad categories: common shocks, popularity, and homophily.

First, in the Colombia illustration I control for common shocks using session �xed e�ects. Second,
certain individuals may be more popular within networks due to their existing characteristics. For example,
if it is more prestigious to have rich friends, wealthier people may have more expansive networks than
they would otherwise. �is e�ect would manifest itself in both social network structure and choices made
in forming experimental risk sharing groups. �ird, I also consider other characteristics that might serve
as measures of social distance. Respondents who are closer in social, economic, and geographic space tend
to be more likely to be connected in social networks (McPherson et al., 2001).

D.4.1 Results from Selection-on-Observables Approach: Colombia

In the Colombia illustration, I include the sum of (log) income, education, risk preferences, and age to
control for factors that might drive popularity, and control for the di�erences in gender, (log) income,
education, whether the respondents live in an urban area, risk preferences, and age for social distance.
�is is consistent with the approach suggested by Fafchamps and Gubert (2007).

Results from selection-on-observables regressions in Colombia broadly accord with their counterparts.
�ese results can be seen in speci�cations (1)-(4) of Table D9. For main results, pa�erns of signi�cance
(and rough magnitudes) replicate exactly from Table 2. Examining longer walks, there is not a clear pa�ern
of changes in coe�cients. However, these regressions do add slightly to the precision of the estimates.

D.4.2 Results from Selection-on-Observables Approach: Tanzania

In the Tanzania illustration, I include the sum and absolute di�erences of age and wealth. Additionally,
I use measures of social distance between households including if both of the household heads are male,
or if one is male and the other female, both household heads have education above a primary level, or if
only one household head does, if both households are Muslim (households are either Muslim, Catholic or
Lutheran), or if only one household is Muslim, if they belong to the same tribe, and if they belong to the
same clan. Similar to in the case of Colombia, this is consistent with the guidance from Fafchamps and
Gubert (2007).

I replicate regressions with all three transfer outcomes with these controls. I focus here on Tables D10
and E4, which replicate Tables 3, and E1 from the main text. I �nd very close accordance between results
in these two sets of tables both in terms of the magnitude of estimates and pa�erns of signi�cance, though
estimates fall a bit with the inclusion of controls. Given that the magnitude of estimates of network struc-
ture that extend beyond those directly adjacent is smaller, this has a more noticeable e�ect on distance-2
and 3 connections and community co-membership than distance-1 connections. Reciprocal transfers esti-
mates are summarized in Tables D11 and E5; total transfers in Tables D12 and E6. While these results are
also accord closely to the estimates in above, one exception does stick out. In particular, when considering
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Table D9: E�ects of Dyadic Relationships on Group Co-Membership: Colombia Friends and Family Net-
work with Controls

Co-Membership in Risk Sharing Group
(1) (2) (3) (4) (5) (6) (7)

Supported 0.198∗∗∗ 0.0903∗∗∗ 0.0963∗∗∗
(10.17) (4.31) (4.72)

Distance-1 0.176∗∗∗ 0.0751∗∗∗ 0.194∗∗∗ 0.155∗∗∗ 0.0887∗∗∗
(11.07) (4.90) (12.39) (9.58) (4.95)

Distance-2 0.0395∗∗ 0.0206 0.0255
(3.36) (1.52) (1.85)

Distance-3 0.00809 0.00169 0.00413
(0.79) (0.15) (0.38)

Same Community 0.112∗∗∗ 0.0547∗∗∗ 0.0487∗∗∗ 0.0442∗∗∗
(8.61) (5.25) (3.89) (3.67)

N 88266 88266 88266 88266 88266 88266 88266
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

total transfers, distance-2 and 3 connections lose signi�cance when controls are included. �is may indi-
cate the importance of the role of homophily in the size of risk sharing transfers beyond those adjacent in
the network. Indeed, dyadic measures of religion, clan and wealth enter signi�cantly here.
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Table D10: E�ects of Dyadic Relationships on Transfers: Tanzania Nyakatoke Network with Controls

Any Transfers Within Dyad
(1) (2) (3) (4) (5) (6) (7)

Supported 0.667∗∗∗ 0.0553 0.0634
(23.50) (0.98) (1.13)

Distance-1 0.667∗∗∗ 0.609∗∗∗ 0.727∗∗∗ 0.723∗∗∗ 0.673∗∗∗
(28.99) (13.36) (31.96) (30.42) (15.55)

Distance-2 0.108∗∗∗ 0.105∗∗∗ 0.106∗∗∗
(5.45) (5.22) (5.23)

Distance-3 0.0189∗ 0.0181∗ 0.0183∗
(2.56) (2.52) (2.55)

Same Community 0.140∗∗∗ 0.0356∗ 0.00814 0.00735
(7.06) (2.42) (0.57) (0.51)

N 14042 14042 14042 14042 14042 14042 14042
t statistics in parentheses constructed using dyadic-robust standard errors
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table D11: E�ects of Dyadic Relationships on Reciprocal Transfers: Tanzania Nyakatoke Network with
Controls

Reciprocal Transfers Within Dyad
(1) (2) (3) (4) (5) (6) (7)

Supported 0.490∗∗∗ 0.0374 0.0393
(11.87) (0.52) (0.55)

Distance-1 0.491∗∗∗ 0.452∗∗∗ 0.501∗∗∗ 0.492∗∗∗ 0.461∗∗∗
(14.55) (8.05) (14.42) (14.09) (7.97)

Distance-2 0.0244∗∗ 0.0198∗ 0.0201∗∗
(3.15) (2.57) (2.65)

Distance-3 -0.00183 -0.00331 -0.00319

Same Community 0.0994∗∗∗ 0.0228∗ 0.0165 0.0160
(6.30) (2.19) (1.58) (1.57)

(-0.44) (-0.77) (-0.75)
N 14042 14042 14042 14042 14042 14042 14042
t statistics in parentheses constructed using dyadic-robust standard errors
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table D12: E�ects of Dyadic Relationships on Total Transfers: Tanzania Nyakatoke Network with Controls

Total Transfers Within Dyad
(1) (2) (3) (4) (5) (6) (7)

Supported 2857.0∗∗∗ -206.6 -202.3
(8.87) (-0.26) (-0.25)

Distance-1 2956.0∗∗∗ 3089.4∗∗∗ 2988.4∗∗∗ 2951.6∗∗∗ 3111.6∗∗∗
(8.68) (3.83) (8.77) (8.99) (3.93)

Distance-2 65.86 47.42 45.94
(1.83) (1.16) (1.05)

Distance-3 1.959 -3.954 -4.562
(0.07) (-0.15) (-0.16)

Same Community 543.8∗∗∗ 83.50 65.96 68.48
(5.15) (1.30) (1.04) (0.99)

N 14042 14042 14042 14042 14042 14042 14042
t statistics in parentheses constructed using dyadic-robust standard errors
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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D.5 Speci�cation Choice

To test robustness to the choice to estimate coe�cients using LPM, I �rst check the predicted outcomes of
the LPM, with and without �xed e�ects. If predictions from LPM lie within the unit interval, the estimated
e�ects should not su�er from the choice of speci�cation (Horrace and Oaxaca, 2006). Second, for those
models with predictions outside the unit interval, I re-estimate my models of interest using dyadic logistic
regression.

For both illustrations, in speci�cations I check that do not have �xed e�ect, predictions lie within the
unit interval. However, in the Colombia illustration, I �nd that when session �xed e�ects are employed,
a small proportion of predictions lie outside the unit interval, suggesting that LPM may be biased or in-
consistent. To assess this in practical terms, I present results from the LPM and logistic regression with
and without �xed e�ects for two of my preferred speci�cations to compare overall marginal e�ects. In
particular, I replicate speci�cations (4) and (7) from Table 2.37

Estimates from these models are presented in Table D13. While the logistic results reveal lower to-
tal marginal e�ects than the LPM �xed e�ects speci�cation, I argue this lays bare the tension between
modeling the outcome using a link function and excluding the e�ect of confounding factors. �e logistic
regression results without �xed e�ects are not robust to unobservable factors that might occur at the mu-
nicipality or session level. We see that OLS estimates fall, without �xed e�ects, and the overall marginal
e�ects fall yet again in the non �xed e�ects logit. However, the overall marginal e�ects from �xed e�ects
logit tend to closely match the LPM �xed e�ects both qualitatively (i.e., statistical signi�cance and sign)
but also in magnitude. Beyond this, LPM with group �xed e�ects may be be�er adapted for this particular
empirical se�ing than logit since group co-membership is a rare outcome (Timoneda, 2021). Speci�cally, in
my preferred speci�cation (Table D13 column 8) detected community co-membership enters signi�cantly
with a 5.3 percentage point increase in group co-membership associated with being in the same detected
community.

37Unfortunately, I am not able to estimate Chamberlain conditional logit and instead estimate logit with dummy FEs instead.
While one might worry about an incidental parameters problem estimating dummy FEs in a logistic regression with many FE,
the fact that the data features a limited number of groups and a large number of dyads should assuage these concerns (this is akin
to the case in standard panel where T is large relative to n, suggesting that bias should be small). Nevertheless, LPM with FEs
is preferred given that the non-linearity of the logit model means we cannot obtain estimates that are independent of the group
e�ects, as is possible in a linear model.
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Table D13: Logistic Regression: Group Co-Membership on Colombia Friends and Family Network

Co-Membership in Risk Sharing Group
LPM Logit LPM Logit

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: LPM Estimates and Logit Overall Marginal E�ectsa

Supported 0.0676∗∗ 0.0872∗∗∗ 0.0351 0.0625 0.0648∗ 0.0920∗∗∗ 0.0323 0.0674
(2.69) (4.19) (2.55) (4.52)

Distance-1 0.0841∗∗∗ 0.0750∗∗∗ 0.0672 0.0685 0.0541 0.0866∗∗∗ 0.0342 0.0836
(4.11) (4.92) (1.52) (4.81)

Distance-2 -0.0349 0.0227 -0.0379 0.0308
(-1.00) (1.63)

Distance-3 -0.0572 0.00203 -0.0747 -0.0083
(-1.70) (0.18)

Same Comm. 0.0306 0.0583∗∗∗ 0.0279 0.0661 0.0459∗∗∗ 0.0488∗∗∗ 0.0445 0.0532
(1.59) (5.71) (3.67) (4.09)

Panel B: Odds Ratios
Supported 0.370∗ 0.660∗∗∗ 0.341∗ 0.711∗∗∗

(2.56) (4.28) (2.32) (4.65)

Distance-1 0.709∗∗∗ 0.723∗∗∗ 0.361 0.882∗∗∗
(3.96) (5.59) (1.02) (4.23)

Distance-2 -0.400 0.325
(-1.08) (1.48)

Distance-3 -0.788∗ -0.0881
(-2.08) (-0.47)

Same Comm. 0.294 0.697∗∗∗ 0.470∗∗∗ 0.561∗∗∗
(1.48) (6.51) (4.08) (4.01)

N 88266 88266 88266 86518 88266 88266 88266 86518
Session FE No Yes No Yes No Yes No Yes
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
a Overall marginal e�ects are computed β̂OR × p̂(1− p̂), where p̂ ≈ 0.106 and β̂OR can be found in Panel B.
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E �e Role of Insurance Groups in Risk Sharing Transfers

E.1 Summary

�e detailed data from Tanzania also allow me to document the role of co-membership in pre-existing
insurance groups. When further including co-membership in any of these insurance groups in speci�ca-
tions, two additional insights emerge. First, coe�cients on co-membership in detected communities and
co-membership in insurance groups have similar magnitudes, suggesting this informal network structure
may be of similar importance to the formal structure of insurance groups. Second, the information from
communities corresponds only weakly to that encompassed by the insurance groups, in that it explains
transfers even when controlling for co-membership in insurance groups.

E.2 Insurance Groups

I also have risk sharing groups in the Tanzania data; however, these are not outcomes since they are
longstanding organizations meant to share risk related to funeral expenses and illness (Dercon et al., 2006).
Co-membership in these groups is de�ned similarly to the Colombia illustration. However, in addition to
being explanatory as opposed to outcomes, these groups di�er in that membership can overlap among
the groups. �erefore, I de�ne an indicator for if there is any overlap in group membership at the dyad
level. Formally, le�ing Groupsi be the set such that Groupi ∈ Groupsi, Any Groupij = 1(∃Group ∈
Groupsi ∩ Groupsj)

E.3 Empirical Strategy and Results

�e Tanzania data features another unique element: variables indicating co-membership in longstanding
insurance groups which provide insurance for funeral expenses and against illness (Dercon et al., 2006). I
estimate several speci�cations controlling for co-membership in these risk sharing groups, with a speci�-
cation of interest:

Risk Sharingij = α+ β0Sij +

3∑
s=1

βsA
s
ij + γCij + δ0SijCij +

3∑
s=1

δsA
s
ijCij + ηGroupij + εij . (1)

In particular, that these groups are legible (and indeed, formal) in this context may help understand how
well communities proxy for the quasi-formal groups which form for the purpose of risk sharing.

�e village data also have a relevant dyadic feature not present in the previous data. In particular,
I see if respondents had risk sharing groups in common, which may drive both the formation of net-
works and also transfers themselves (Fershtman and Persitz, 2021). What role do these groups play in risk
sharing transfers in comparison to network structure? I �nd that there is some overlap in information
between these variables. Interestingly, the coe�cient on risk sharing is most a�enuated by distance-1
connections as opposed to community co-membership. Focusing on speci�cation (5) in Table E1, I �nd
that co-membership in at least one risk sharing group is associated with a 5.1 percentage point increase in
the likelihood of making any transfers within a dyad . Notably this correlation is lower, though of similar
magnitude of that yielded by community co-membership.
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Table E1: �e Role of Groups in E�ects on Transfers: Tanzania Nyakatoke Network sans Controls

Any Transfers Within Dyad
(1) (2) (3) (4) (5) (6)

Same Group(s) 0.114∗∗∗ 0.0627∗∗∗ 0.0528∗∗ 0.101∗∗∗ 0.0415∗ 0.0410∗
(4.23) (3.56) (2.92) (3.97) (2.39) (2.41)

Supported 0.714∗∗∗ 0.0853
(25.29) (1.49)

Distance-1 0.707∗∗∗ 0.780∗∗∗ 0.706∗∗∗
(31.57) (28.81) (16.15)

Distance-2 0.139∗∗∗ 0.136∗∗∗
(5.38) (5.28)

Distance-3 0.0300∗∗∗ 0.0291∗∗∗
(6.38) (6.23)

Same Community 0.162∗∗∗ 0.0107
(6.86) (0.71)

N 14042 14042 14042 14042 14042 14042
t statistics in parentheses constructed from dyadic-robust Standard Errors
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

62



Table E2: �e Role of Groups in E�ects on Reciprocal Transfers: Tanzania Nyakatoke Network sans Con-
trols

Reciprocal Transfers Within Dyad
(1) (2) (3) (4) (5) (6)

Same Group(s) 0.0565∗∗∗ 0.0197∗ 0.0124 0.0476∗∗∗ 0.00922 0.00863
(3.94) (2.32) (1.45) (3.66) (1.07) (1.02)

Supported 0.508∗∗∗ 0.0455
(11.54) (0.62)

Distance-1 0.506∗∗∗ 0.520∗∗∗ 0.473∗∗∗
(13.85) (13.30) (8.01)

Distance-2 0.0333∗∗ 0.0281∗∗
(3.23) (2.95)

Distance-3 0.0000595 -0.00155
(0.02) (-0.44)

Same Community 0.110∗∗∗ 0.0185
(5.87) (1.70)

N 14042 14042 14042 14042 14042 14042
t statistics in parentheses constructed from dyadic-robust standard errors
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table E3: �e Role of Groups in E�ects on Total Transfers: Tanzania Nyakatoke Network sans Controls

Total Transfers Within Dyad
(1) (2) (3) (4) (5) (6)

Same Group(s) 374.5∗ 154.9 104.2 323.8∗ 90.34 88.62
(2.49) (1.32) (0.86) (2.26) (0.75) (0.75)

Supported 3025.2∗∗∗ -119.2
(8.67) (-0.15)

Distance-1 3099.3∗∗∗ 3185.6∗∗∗ 3237.0∗∗∗
(8.28) (8.24) (3.89)

Distance-2 167.1∗∗∗ 145.0∗∗∗
(3.94) (3.45)

Distance-3 32.09∗∗∗ 25.19∗∗
(3.36) (2.89)

Same Community 624.8∗∗∗ 79.45
(4.86) (1.09)

N 14042 14042 14042 14042 14042 14042
t statistics in parentheses constructed from dyadic-robust Standard Errors
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table E4: �e Role of Groups in E�ects on Transfers: Tanzania Nyakatoke Network with Controls

Any Transfers Within Dyad
(1) (2) (3) (4) (5) (6)

Same Group(s) 0.0877∗∗∗ 0.0476∗∗ 0.0381∗ 0.0789∗∗ 0.0320 0.0318
(3.53) (2.67) (2.16) (3.28) (1.84) (1.85)

Supported 0.662∗∗∗ 0.0632
(23.15) (1.13)

Distance-1 0.663∗∗∗ 0.723∗∗∗ 0.669∗∗∗
(28.53) (31.12) (15.39)

Distance-2 0.107∗∗∗ 0.105∗∗∗
(5.31) (5.10)

Distance-3 0.0187∗ 0.0183∗
(2.48) (2.46)

Same Community 0.136∗∗∗ 0.00685
(6.89) (0.48)

N 14042 14042 14042 14042 14042 14042
Controls Yes Yes Yes Yes Yes Yes
t statistics in parentheses constructed using dyadic-robust standard errors
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table E5: �e Role of Groups in E�ects on Reciprocal Transfers: Tanzania Nyakatoke Network with Con-
trols

Reciprocal Transfers Within Dyad
(1) (2) (3) (4) (5) (6)

Same Group(s) 0.0450∗∗∗ 0.0154 0.00834 0.0387∗∗∗ 0.00662 0.00623
(3.62) (1.80) (1.00) (3.32) (0.78) (0.75)

Supported 0.488∗∗∗ 0.0393
(11.74) (0.55)

Distance-1 0.490∗∗∗ 0.501∗∗∗ 0.460∗∗∗
(14.40) (14.24) (7.94)

Distance-2 0.0242∗∗ 0.0199∗
(3.04) (2.56)

Distance-3 -0.00185 -0.00320
(-0.44) (-0.74)

Same Community 0.0978∗∗∗ 0.0159
(6.14) (1.55)

N 14042 14042 14042 14042 14042 14042
Controls Yes Yes Yes Yes Yes Yes
t statistics in parentheses constructed using dyadic-robust standard errors
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table E6: �e Role of Groups in E�ects on Total Transfers: Tanzania Nyakatoke Network with Controls

Total Transfers Within Dyad
(1) (2) (3) (4) (5) (6)

Same Group(s) 294.9∗ 122.7 74.35 260.7∗ 70.20 68.87
(2.30) (1.15) (0.68) (2.10) (0.64) (0.63)

Supported 2842.9∗∗∗ -202.7
(9.01) (-0.25)

Distance-1 2947.4∗∗∗ 2979.0∗∗∗ 3103.3∗∗∗
(8.76) (8.86) (3.90)

Distance-2 63.56 43.98
(1.74) (0.99)

Distance-3 1.729 -4.689
(0.06) (-0.17)

Same Community 533.1∗∗∗ 67.39
(5.04) (0.97)

N 14042 14042 14042 14042 14042 14042
Controls Yes Yes Yes Yes Yes Yes
t statistics in parentheses constructed using dyadic-robust standard errors
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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F Group Speci�cations: Network Structure and Defaults

F.1 Econometric Speci�cation

Are networks tied to the rate of default within experimental risk sharing groups? To provide context,
I build on the analysis from Appendix Table A1 of A�anasio et al. (2012a). Whereas this table presents
results using the close friends and family network, I use the friends and family network. In particular, at
the group level, I estimate the following speci�cation:

Pr(Default|G, v) = αv + βNG + γDensity(G, .) + δNG × Density(G, .) + θX̄G + εGv (1)

where NG is the size of group G, Density(G, .) is one of a set of network densities, X̄G is a set of controls
consisting of group means, and αv are session �xed e�ects. As in A�anasio et al. (2012a) I expect γ < 0
and δ > 0. �at is, I expect defaults to fall in network density, but for this e�ect to a�enuate as groups
grow larger.

F.2 Variable Construction

I use �ve de�nitions of network density: supported density, distance-1 density, distance-2 density, distance-
3 density, and co-community density. (By comparison, A�anasio et al. (2012a) computed only distance-1
density within the close friends and family network.) Density is computed by taking in the number of dyads
within the group with the given characteristic (e.g., ‘are connected’) over the total number of dyads within
the group. More formally, I compute supported density38, distance-1 density; and community density:

Density(G,S) =

∑
i,j∈G Sij

2NG(NG − 1)
(2)

Density(G,A) =

∑
i,j∈GAij

2NG(NG − 1)
(3)

Density(G,C) =

∑
i,j∈GCij

2NG(NG − 1)
(4)

Distance-s density generalizes network density, includes all dyads of minimum distance less than s:39

Density(G,As) =

∑
i,j∈G

∑s
t=1A

t
ij

2NG(NG − 1)
. (5)

F.3 Results: Network Structure and Defaults

Network density does not correlate with group level default rates in the friends and family network. �e
results are both statistically insigni�cant at all conventional levels of statistical signi�cance, tend to be
economically small in magnitude, and are facing in the opposite direction of expectation. For example,
a 1 percentage point increase in distance-1 density at the group level corresponds to a 0.036 percentage
point increase in the default rate (Table F1). On the other hand, when these results are run using the close
friends and family network, they appear in the same pa�ern as A�anasio et al. (2012a), where default falls
in network density, and this e�ect is a�enuated as groups grow larger (Table F2). �is can be gauged by
inspecting Speci�cation (2) in table F2, which is a replication of speci�cation (2) in table A1 of A�anasio

38Note that I divide the density calculation by two because summing over all entries of the relevant adjacency matrix double-
counts the number of connections.

39It may more accurately be called shell-s density, though I retain earlier language for rhetorical consistency.
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et al. (2012a). However, distance-1 density using the close friends and family network is not unique in
explaining defaults. In fact, no particular statistic does much be�er than another, and all are strongly
correlated.

In interpreting these results, it is important to note that from the perspective of theory is unclear
whether we should see reductions in defaults to be correlated with density. In particular, one could imagine
a theoretical model where groups grow only to a size where very few group members default. �is size
would be endogenous on the underlying network structure. �at is, as network structure improves for the
purposes of preventing such behavior, group size will grow, testing the limits of such improvements in
structure.
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Table F1: Defaults by Group using Colombia Friends and Family Network

Proportion of Defaults in Risk Sharing Group
(1) (2) (3) (4) (5)

Group Size 0.00350 0.00279 0.00314 0.00524 -0.00222
(0.93) (0.66) (0.71) (1.00) (-0.45)

Supported Density 0.0529
(0.71)

Group Size × Supported -0.0134
(-0.71)

Distance-1 Density 0.0364
(0.48)

Group Size × Distance-1 Density -0.00769
(-0.41)

Distance-2 0.0130
(0.25)

Group Size × Distance-2 Density -0.00513
(-0.42)

Distance-3 Density 0.0377
(0.71)

Group Size × Distance-3 Density -0.00763
(-0.65)

Community Density -0.0362
(-0.74)

Group Size × Community Density 0.00930
(0.86)

N 526 526 526 526 526
Session FE Yes Yes Yes Yes Yes
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table F2: Defaults by Group using Colombia Close Friends and Family Network

Proportion of Defaults in Risk Sharing Group
(1) (2) (3) (4) (5)

Group Size -0.00221 -0.00441 -0.00586 -0.00656 -0.00415
(-0.56) (-1.08) (-1.23) (-1.22) (-0.94)

Supported Density -0.129∗
(-2.63)

Group Size × Supported Density 0.0293
(1.90)

Distance-1 Density -0.155∗∗
(-3.25)

Group Size × Distance-1 Density 0.0390∗
(2.61)

Distance-2 Density -0.118∗
(-2.46)

Group Size × Distance-2 Density 0.0323∗
(2.61)

Distance-3 Density -0.114∗
(-2.40)

Group Size × Distance-3 Density 0.0302∗
(2.42)

Community Density -0.120∗
(-2.39)

Group Size × Community Density 0.0282∗
(2.15)

N 526 526 526 526 526
Session FE Yes Yes Yes Yes Yes
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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