
Social Network Structure and the Scope of Risk Pooling

Daniel S. Putman∗

�is Version: July 1, 2021
Click Here For Most Current Version

Abstract

�e scope of risk pooling refers to the set of individuals with whom one can pool risk, cap-
turing both the size and the diversity of the pool. In practice, while risk sharing transfers
are mediated by bilateral networks, the network neighborhood may not serve as the ultimate
measure of the scope of risk pooling. Using data from a laboratory experiment in Colom-
bia, I explore how social network structure drives the formation of experimental risk pooling
groups. Using dyadic regression, I �nd that direct connections, supported connections, and
detected community co-membership explain co-membership in experimental risk pooling
groups. In addition, I �nd that the combination of these measures can detect strong and
weak ties when given only an unweighted network. �is work has implications for the wel-
fare derived from risk pooling, non-market spillovers, the collection of social network data,
and theoretical assumptions commonly used within the risk sharing literature.
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1 Introduction

Risk pervades the economic lives of the poor, determining the crops they plant, what jobs they
take, the investments they make, and where they live (Banerjee and Du�o, 2007; Collins et al.,
2010). �is fact can lead to costly distortions in decision-making (Elbers et al., 2007; Karlan et al.,
2014). Similarly, vulnerability to uncertainty itself reduces welfare in an ex ante sense (Ligon and
Schechter, 2003). Despite this, formal �nancial markets that deal explicitly with risk, including
insurance markets, are o�en missing for the poor (Mccord et al., 2007; Demirguc-Kunt et al., 2018).
In the absence of formal insurance markets, informal risk pooling built on trust and reciprocity
is a common and important method of managing risk (Fafchamps and Lund, 2003; Karlan et al.,
2009).

�ese social motivations are powerful but limited tools to ensure cooperation. In particular,
as the size and diversity of risk pooling groups grow, it o�en becomes more di�cult to rely on
trust or reciprocity to ensure that they function well (Fitzsimons et al., 2018). �is runs counter
to the characteristics of good risk pooling groups, which are both large and well diversi�ed. �e
scope of risk pooling, or the relevant set of individuals with whom one pools risk, encapsulates
both the size and diversity of the pool. Consider, for example, a simple risk pooling arrangement
where all members of a group share such that each member receives consumption equal to the
average member’s income. In this arrangement, individual shocks vanish in the average as group
size grows. Likewise, the lower the (positive) correlation in income, the greater the fraction of
income shocks that can be shared.1 �is diversi�cation in shocks might be achieved through
diversity in occupation or geography.

Tools and concepts developed to characterize social network structure may yield new insights
into the scope of risk pooling in villages. �ese insights are particularly important in informal
contexts where groups are loosely de�ned, rarely self-identi�ed, and o�en illegible to outsiders.
In this paper, I examine how the scope of risk pooling depends on social network structure. To
answer this question, I draw on network structures identi�ed in the risk sharing literature as
well as community detection, a tool from network science. In answering this question, I provide
an approach to identify the scope of risk pooling that is “conditioned” on the context as it is
measured by social network data.

Using data that combines surveyed friends and family networks with an incentivized risk
pooling lab experiment (A�anasio et al., 2012b), I estimate an econometric model of network for-
mation using dyadic regression to test whether measures of social network structure can explain
selection into these experimental risk pooling groups. �at is, I explain behavior in the risk pool-
ing experiment using the structure of participants’ real world networks. �is approach treats the

1Likewise, where income shocks are anti-correlated, risk pooling could also serve to hedge income shocks.
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dyad as the unit of observation, and thus the outcome of the regression is co-membership in a risk
pooling group. I use this to determine which measures of social network structure explain who
pools risk with whom in the experiment. �is social network structure, in turn, can inform the
scope of risk pooling. For example, a person may be more likely to share risk with someone who
is close to them in their social network, such as a direct connection within the network. However,
the strength of individual direct connections may vary by characteristics of the rest of the shared
network, such as if the dyad’s relationship is “supported” by a third friend or family member who
observes both in the relationship (Jackson, Rodriguez-Barraquer, and Tan, 2012). If this measure
of the network “context” explains co-membership, but other measures do not, we should expect a
much smaller scope of risk pooling than networks would otherwise indicate. Candidate measures
of social network structure include these supported connections, direct connections (Fafchamps
and Lund, 2003), distance-2 (“friends of friends”) and distance-3 (“friends of friends of friends”)
connections (Bourlès, Bramoullé, and Perez-Richet, 2017; de Weerdt and Dercon, 2006), and co-
membership in detected communities. I argue this �nal measure is a good proxy for the features
that promote good risk sharing in networks as is detailed in Bloch, Genicot, and Ray (2008) and
Ambrus, Mobius, and Szeidl (2014). To add context to these estimates, I analyze how defaults in
groups are related to network structure.

�e estimates from the dyadic regressions show that those measures that indicate closer social
proximity translate more strongly into risk pooling in the experiment. While direct connections
consistently explain co-membership in experimental risk pooling groups, distance-2 connections
explain co-membership less consistently. On the other hand, I do not �nd that distance-3 con-
nections help explain co-membership in the same experimental risk pooling group. Supported
relationships and detected community co-membership are also help explain co-membership in
experimental risk pooling groups. �ese �nal two measures capture tightly knit social network
structure, albeit at di�erent scales. Relationship support documents the presence of a third friend
or family member who is also connected to both members of the dyad, while community de-
tection scales this to capture large, densely connected, and clustered groups in social networks.
Dyads who are co-members of one of these detected communities will tend to have common
friends even if they are not friends themselves.

�at distance-2 and community co-membership ma�er for the eventual experimental risk
pooling groups implies a scope of risk pooling in this se�ing that extends beyond one’s imme-
diate network neighborhood to a more macro-level. However, the failure of distance-3 nodes to
explain joining the same risk pooling group suggests that risk pools at a relatively more micro
level than the village.2 �us, we can think of the true scope of risk pooling in this se�ing as
occurring at a meso-level. Notably, the extension of risk pooling beyond network neighborhood

2�is falls well short of the diameter of the “giant components” of these networks.
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is at �rst counter-intuitive. Very o�en improvements in measurement simply make clear to the
econometrician what the respondents or participants of the study already understand. For ex-
ample, when we measure risk sharing networks, we elicit what respondents already know about
their networks. However, measurement using community detection o�en pairs people who are
not aware that they lie within each other’s risk pooling groups. In this way, study participants
may not fully appreciate their own risk pool beyond their network neighborhood.

Communities do not just bound the scope of risk pooling; they also serve to distinguish be-
tween dyads that are already closely connected. Supported relationships that also lie within
communities serve as the strongest ties on the extensive margin. In particular, if two respon-
dents are supported by a third respondent and also are co-members of a community, they have
around a 24 percentage point excess probability of matching, relative to an 8 percentage point
excess probability among a similarly supported pair who are not co-members of a community.3

Similarly, by interacting community with all of the other network measures, we can pin down a
set of “strong and weak ties” in social networks in a natural way using a single network. �is is
valuable to researchers who want to collect data on relationships of di�erent intensities using a
relatively condensed network survey.

Finally, we can use these results as a to provide an audit on the state of economic models
of risk pooling. Because risk sharing networks are di�cult to measure, the literature is o�en
driven by theory where authors are le� to make an assumption on the scope of risk pooling.
At a high level, authors must assume that bilateral risk pooling happens either in a network
se�ing, in a group se�ing, or in the village se�ing. I review the literature on risk sharing and risk
pooling, explicitly documenting how di�erent assumptions a�ect results about the scope of risk
pooling. �e meso-level (from the perspective of the village) scope of risk pooling documented
empirically adds credence to approaches that model risk pooling at the sub-village level in groups
and/or networks, including work by Genicot and Ray (2003), Bloch, Genicot, and Ray (2008), and
Ambrus, Mobius, and Szeidl (2014).

To test the robustness of the results, I repeat the above analysis using the network of close
friends and family, which restricts friends or family to those dyads living in geographically prox-
imate dwellings. �ese results mirror those using the main network. I likewise include a ba�ery
of measures of a�nity that might drive the formation of these risk pooling groups to isolate these
measures as a meaningful mechanism of group formation. �e results are robust to sums and dif-
ferences in experimental choices made before the risk pooling experiment, winnings, age, gender,
education, household structure, and consumption.

�ese results are relevant for policy decisions, evaluation, and design. Some evidence has
shown that development interventions (including increased �nancial access) may have the unin-

3�is is expressed as excess probability of matching as it is in excess of municipality level �xed e�ects.
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tended consequence of eroding informal �nancial and economic relationships. �ese interven-
tions include savings (Dizon, Gong, and Jones, 2019), micro�nance (Banerjee et al., 2021), and
community-based development programs (Heß, Jaimovich, and Schündeln, 2020). Despite the
value of increased �nancial inclusion, understanding the trade-o� between �nancial access and
network durability is important to understanding and measuring overall �nancial health.4 More-
over, measurement of the quality of informal �nancial networks (e.g., insurance provided) is o�en
an amorphous and di�cult task that requires measuring the scope of risk pooling in the relevant
context. To this end, an early set of papers assume the scope of risk pooling occurs at the vil-
lage level. However, the results in this apper indicate that assuming village-level pooling should
overstate the welfare gains from risk sharing. On the other hand, network models have recently
gained popularity, though these models o�en assume risk sharing to be a purely bilateral process.
It is not immediately clear that risk pooling is simply bilateral, and in fact, the empirical results
in this paper suggest that this is a conservative assumption in terms of the value of risk pooling.

Understanding the scope of risk pooling can improve evaluation and design by improving our
understanding of the scope of spillovers by non-market mechanisms. Further, it can enable de-
velopment economists to identify treatment e�ects when network-mediated spillovers confound
their estimation.5 One approach to deal with such issues would be to use detected communities
of the treated as a “spillover group” and those who are not in these communities as a pure control
group.6 Second, spillovers are sometimes considered as a component of policy design.7 Knowl-
edge of the scope of risk pooling would inform the scope of pass-on treatment and might be used
for purposes of ex ante targeting of spillovers.

2 Literature Review

2.1 �e Second-Best World of Risk Sharing

Complete risk sharing is a natural benchmark for the degree of risk sharing observed in vil-
lages. For example, Diamond (1967) models how contingent commodity markets can achieve
optimal outcomes by completely smoothing idiosyncratic risk.8 �ese contingent commodity
markets can be argued to resemble informal risk sharing without information asymmetries or

4For an example of a project with such goals, see Karlan and Brune (2017).
5While some of the spillovers from cash transfers are mediated through market mechanisms, a sizeable portion

may also come through informal transfers.
6�is might complement strategies such as those in Leung (2019a) and Leung (2019b), which study the estimates

of treatment e�ects in the presence of network mediated spillovers.
7See for example Heifer International’s Pay-it-Forward mechanism (Janzen et al., 2018).
8More precisely, if a risk sharing arrangement approximates complete contingent commodity markets in a vil-

lage, Pareto optimal allocations of consumption are achieved by competitive equilibrium.
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other market imperfections. However, evidence of imperfect risk pooling abounds at the village
level (Townsend, 1994; Ligon, 1998; Chiappori et al., 2014; Kinnan, 2021). Research has pointed
to the scope being well within the village, with risk-sharing itself o�en occurring at the bilateral
level (de Weerdt and Dercon, 2006; Fafchamps and Lund, 2003; Collins et al., 2010). Still, it is
unclear what the scope of risk pooling within the village is in practice.

Many rationales have emerged to explain the failure of village economies to achieve com-
plete risk sharing. �ese explanations include (but are not limited to) hidden income and as-
sets (Cabrales, Calvo-Armengol, and Jackson, 2003; Baland, Guirkinger, and Mali, 2011; Kinnan,
2021; Ligon and Schechter, 2020), moral hazard over risk and e�ort (Boucher and Delpierre, 2014;
Delpierre, Verheyden, and Weynants, 2016; Ligon and Schechter, 2020), transaction costs (Jack
and Suri, 2014), and limited commitment (Coate and Ravallion, 1993; Ligon, �omas, and Wor-
rall, 2002; Bloch, Genicot, and Ray, 2008; Ambrus, Mobius, and Szeidl, 2014; Kinnan, 2021; Ligon
and Schechter, 2020). All of these serve to place constraints on bilateral risk sharing, or risk pool-
ing at the village level, through information asymmetries. Additionally, and as I cover in detail in
the next section, network structure has been posed as an explanation for incomplete risk sharing.

2.2 Matching Measures to the Literature

We can organize de�nitions of the scope of risk pooling to the assumptions and results found
in the literature on risk pooling. �ese include the network neighborhood (or the set of agents
with whom one is directly connected) (Fafchamps, 1999; Fafchamps and Gubert, 2007; Jack and
Suri, 2014; Blumenstock, Eagle, and Fafchamps, 2016), informal and quasi-formal groups such as
kin groups (Fitzsimons, Malde, and Vera-Hernández, 2018), burial groups (Dercon et al., 2006),
and allowing the scope of risk pooling to depend on network structure. In this �nal case, we
focus on several aspects of network structure. For example, friends of friends might be part of
an agent’s risk pool if transfers tend to �ow through networks (Belhaj and Deroı̈an, 2012). As
another example, enforceability concerns may mean that members of the network neighborhood
are excluded if they don’t have common friends (Jackson, Rodriguez-Barraquer, and Tan, 2012;
de Weerdt, 2002). In the following subsections, I examine these di�erent de�nitions in depth.

2.2.1 Bilateral Risk Pooling and Network Neighbors

Many studies take the network neighborhood, or the set of individuals directly connected to an
agent as the relevant unit of risk pooling (Fafchamps, 1999; Fafchamps and Lund, 2003; de Weerdt
and Dercon, 2006; Fafchamps and Gubert, 2007; Jack and Suri, 2014; Blumenstock, Eagle, and
Fafchamps, 2016). Hence, this is our �rst measure of the scope of risk pooling. We can de�ne
this pool as the set of individuals who are directly connected to agent i in the network: Ni(g) =
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{j|ij ∈ g}. �is scope of risk pooling imposes a number of strict assumptions about the data
at hand which will be relaxed as we move into further measures. First, it assumes that �ows on
networks do not ma�er. �at is, if i transfers to j, this transfer will not continue to �ow through
the network to other neighbors of j. Second, it imposes that the network is static, i.e., that no
links will be systematically removed or added therea�er. �ird, it assumes that friends common
to both i and j do not ma�er. �is would exclude cases like those studied in the literature on
limited commitment, where a common friend serves as an additional incentive not to renege.9

2.2.2 Distance-s Connections

We next consider the case where more distant network connections ma�er for risk pooling. To do
this, we build a unit of risk pooling that includes all agents up to distance of s steps between nodes
away from agent i. I de�ne a shortest paths distance-s neighborhood, similar to the neighborhood
de�nition above. Where the network neighborhood involves all agents who can be reached in
one step, the distance s neighborhood includes those who can be reached in a minimum of s
steps, de�ned N s

i = {j|min distance(i, j) = s}. A visualization of the distance-s sets of nodes is
presented in Figure 1. �e rationale for higher distance connections might be important because
of unobserved �rst order connections, network dynamics (e.g., introduction by friends), or �ows
on networks.

Unobserved �rst order connections and network dynamics are closely related. Starting with
network dynamics, there are cases where the assumption that only direct connections ma�er may
be be perfectly sensible. For example, if the data collected is forward looking and we are interested
in risk sharing shortly therea�er (e.g., “who would you ask…” survey questions) and agents don’t
have an incentive to misreport, this static assumption may make perfect sense. However, in ex
post data sets (e.g., “who have you transferred with…”), we might expect that some individuals in
the set of possible risk sharing partners have not previously been asked to risk share (as may be
the case if asking for a favor is costly). Likewise, we also might expect agents to meet new friends,
o�en through introduction through existing friends. Hence, connections that are relevant in the
future may not be in the currently de�ned set. Finally, in both ex ante and ex post data it may
be the case that some transfers are not reported by one or the other respondent (Comola and
Fafchamps, 2017).

While not relevant to the empirical se�ing at hand,10 network �ows are an interesting pos-
9Additionally, it also assumes that network measurement is faithful to the actual network. Comola and

Fafchamps (2017) explain why this might not be the case.
10Note that this is because risk pooling groups must be joined explicitly in the risk pooling experiment. �ese

�ows of transfers are “shut o�” in our observation of risk pooling behavior. However, since additional transfers may
take place a�er the experiment ends, we can’t rule the importance of �ows out entirely. Speci�cally, the ability to
insure though network �ows may trade o� with more costly connections. If we were to rule these out, knowledge
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sibility. For example, Bourlès, Bramoullé, and Perez-Richet (2017) build a theoretical model of
altruism in networks (related, though distinct from purely self-interested risk sharing) and �nd
that intermediaries are important to �ows of transfers through networks.11 Another possibil-
ity introduction of network �ows occurs when many transfers are taken. If an individual pools
risk with their immediate neighborhood, but everyone in the network is given unlimited costless
transfers to deal with risk, risk pooling groups could extend far beyond that network neighbor-
hood. Despite the possibility for network �ows, de Weerdt and Dercon (2006) �nd that direct
connections ma�er for illness related risk sharing, but distance-2 connections do not.

2.2.3 Support: Common Friends

Second, we examine the case where a smaller subset of the network neighborhood ma�ers more
for risk sharing than the average connection. In particular, where a common friendship exists,
we can de�ne a supported neighborhood as follows: SN i(g) = {j|ij ∈ g, ∃k, jk, ik ∈ g}. A
visualization of this set is presented in Figure 2. Here, while j must already be within agent i’s
neighborhood, we only include them within the scope of risk pooling if there is some third agent k
observing the interaction. �is agent acts to support relationship between i and j. �is approach
is used in Jackson, Rodriguez-Barraquer, and Tan (2012) to model favor exchange in Indian vil-
lages; they �nd that stable networks are those where links are supported by an observing node.
In risk sharing more speci�cally, support serves to counter problems of asymmetric information.
For example, limited commitment in risk sharing networks occurs when contracts on networks
cannot be enforced. �erefore, relationships need to be self-enforcing. Punishment for reneging
on an obligation to transfer money to one’s worse-o� neighbor o�en means being ostracized by
those observing (Coate and Ravallion, 1993; Ligon, 1998). We expect to see stronger risk sharing
relationships when support is present.12

2.2.4 Sub-village Risk Pooling Groups: Found and Detected

�ird, we can consider the case where risk-sharing happens within groups formed in the village,
whether explicitly for the purpose of risk sharing (e.g., funeral insurance groups) or a closely
related purpose (e.g., Rotating Savings and Credit Associations). For example, Barr, Dekker, and
Fafchamps (2012) �nd that in the absence of an enforcement mechanism, community based or-
ganizations (CBOs) increase the likelihood of co-membership in an experimental risk pooling

that �ows will not take place might induce a second degree connection, for example.
11In their model, cases where ij, jk ∈ g but ik 6∈ g, j may serve as an intermediary. Supposing i is altruistic

toward j and j is altruistic toward k, the intermediary j requests a transfer from i in order to make a transfer to k,
who is in need.

12Generalizing from this idea, we might expect to see stronger relationships the more supporting nodes exist,
though our measure of support does not account for this.
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group. While these groups are sometimes present, labeled, and legible to an econometrician, this
is not always the case. However, using social network data, we may also be able to recover latent
risk sharing groups from network data when natural grouping of agents exist (Pons and Latapy,
2004). We refer to these groups as communities, following the community detection literature.

We de�ne an agent’s community as follows: CN i(g) = {j|j 6= i, i, j ∈ Ci} where Ci is a
given group determined either by actual group membership (i.e., a funeral insurance group) or by
processing the network somehow. Many examples exist of “found” informal risk sharing groups,
such as funeral societies in Ethiopia and Tanzania (Dercon et al., 2006) and kinship groups in
Malawi (Fitzsimons et al., 2018). However, contexts where we can determine these groups ex ante
tend to be the exception. In other contexts where this is not the case, it is reasonable to think
that informal groups might still exist. For example, Murgai et al. (2002) use an intuitive coding of
clusters along irrigation canals in Pakistan and shows that insurance-related water exchanges in
this context occur among households within these tightly knit clusters. Additionally, the authors
use a theoretical model to examine the optimal cluster and �nd an extensive/intensive margin
trade-o�.

�ere is a rich theoretical literature on the stability of risk sharing groups and networks as
well as the resulting characteristics of those groups. Genicot and Ray (2003) explore the forma-
tion of risk pooling groups with limited commitment using a theoretical model. Groups which
are stable (in the sense that they are self-enforcing) are bounded in size. Bloch et al. (2008) can
be thought of as an extension of this work, examining the stability of risk sharing networks.13

In this case, networks must act as conduits for transfers and also information. �e authors �nd
that certain network structures facilitate the spread information more than others, which in turn
makes punishment of reneging more e�ective. Network structures with high volumes of infor-
mation pass-through include those with low density (such as trees and lines) and others with
high density (such as the complete graph or a “bridge” graph). “Bridge” graphs, a set of two small
cliques14 connected by one bridging link, are highly relevant here as they provide rationale for
network structure that closely accords with community structure. Finally, Ambrus, Mobius, and
Szeidl (2014) build a theoretical model of the e�ect of network structure on ex post consump-
tion risk sharing that is highly relevant to community detection methods. �e authors �nd that
commonly observed network structures do not imply complete (optimal) risk sharing. Moreover,
they hypothesize that in the case of incomplete (second best) risk sharing a�er the realization
of shocks, risk sharing “islands” will emerge where consumption is smoothed, resulting in good
“local” risk sharing. �ese islands tend to feature a dense local network structure that is not well

13Notably these are exogenous networks for which stability is checked; this work does not explain the formation
of the networks themselves.

14A clique is a complete subgraph occurring in a network graph.
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connected to other portions of the graph, but is well connected within the island.
�ere are a number of ad hoc ways we might get at the network structure suggested by these

three papers. First, as Bramoullé and Kranton (2007a) suggest, we could look at components
of risk sharing networks. In this case, we would include any individual where a path exists
as part of the network in our group. However, this fails to account for the tightly knit network
structure found in both Bloch et al. (2008) and Ambrus, Mobius, and Szeidl (2014). In contrast, one
could search for cliques (completely connected subgraphs) within networks, as seen in Murgai
et al. (2002). �is may be useful, but the resulting network structure will be highly correlated
with detected communities. Furthermore, this de�nition is highly in�exible to the structure of
network data.15 Finally, clustering algorithms can be employed to detect likely communities.
�ese communities lack the clean de�nition of the clique or component but have the advantage of
being able to tame messy data into a consistent unit. For a visualization of community detection,
see Figure 3.

3 Data and Context

3.1 �e Experiment

�e data come from a laboratory experiment in Colombia and were obtained as replication �les
from A�anasio et al. (2012b).16 In addition to experimental behavior, the data features real world
social networks and a rich set of demographic variables. �e experiment was conducted in 70
Colombian municipalities in 2006 and collected information about both risk preferences and risk
pooling groups in two rounds of play. �e �rst round of play consisted of a gamble choice game.
�is was followed by period where individuals were allowed to talk and form risk pooling groups
to share their winnings from a second gamble choice game. Finally, individuals played a second
gamble choice game and winnings were distributed according to the formed risk pooling groups.

3.1.1 �e Gamble Choice Game

�e �rst round of the risk pooling experiment consisted of a version of the Binswanger (1980)
gamble choice game. In this round the the experimental participants chose one gamble from a
list of six presented to them. As can be see in Table 2, these gambles increase in both expected
value and variance of payouts. While in the original study this was used as an indicator of risk

15For example, consider an “almost-clique” which is missing just one connection. Is it more natural to think of
this as two cliques, or should the two unconnected agents who have many friends in common provide insurance for
each other?

16Given concerns about replicability in modern economics, it is worthwhile to note here that I was successful in
replicating the results of A�anasio et al. (2012a) in a push-bu�on replication.
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aversion, here it serves purely to make income random. A�er choosing their gamble, participants
played the gamble of their choice and received a voucher for their payout.

3.1.2 �e Risk Pooling Game

Round two of the experiment consisted of a second gamble choice game with the opportunity to
pool risk. �is time, before meeting with the experimenters, the participants were allowed to form
risk pooling groups in which winnings would be pooled and shared equally. Participants were
given around an hour to an hour and a half (during lunch) to form their groups. �ese groups
were declared before the second set of meetings took place. During the meetings, participants
were given the chance to privately withdraw from their groups a�er seeing the outcome of their
gamble. Participants were informed of this fact before forming groups. In this case, when they
withdraw, they forfeit their share of the group earnings and but do not need to share any of their
earnings with their former group. �e remaining group members would pool their gambles and
share these equally. �us, each group member’s earnings depends on the size and composition
of the group a�er any withdrawal.

Le�ing ` ∈ {1, . . . , 6} be an individual’s type, earnings are equal to mean income from the
gamble choice game. Neglecting withdrawal from the group, expected income from joining these
risk sharing groups will be

E(y) =
6∑

`=1

q` × E(y`) (1)

where q` is the proportion of individuals who chose ` in the risk pooling group and E(y`) is
the expected income of gamble `. Likewise, the standard error of earnings will be SD(ȳ) =√
V ar(ȳ), where

V ar(ȳ) =
1

NG

6∑
`=1

q2` × V ar(y`) (2)

and NG is group size. In the case where withdrawal is possible, it is rational for an individual
to withdraw from the risk pooling group if their revealed income exceeds the expected income.
In reality, both the expected income and the variance of the mean should shrink based on these
withdrawals.17

3.1.3 Sample and Recruitment

Of 122 municipalities surveyed to evaluate Colombia’s national cash transfer program Famil-
ias en Acción, 70 municipalities were randomly drawn to participate in the experiment. About

17Given participant expectations of withdrawals, we could re-write each of these expressions based on expected
composition of groups a�er withdrawal (i.e., the output of a game theoretic model) but leave this aside.

10



60 households from each municipality were invited to an experimental workshop in their mu-
nicipality. Households were selected from among families in the poorest sixth of the national
population. Household members who a�ended were largely female as transfers were speci�cally
targeted toward women. In total, 2,512 individuals took part in the experiment.

3.1.4 Summary of Experiment Outcomes

86.9% of participants chose to join a risk pooling group. �ese groups tended to be small, with an
average of 4.6 members. 6.4% of participants defected from their group a�er winning the second
round gamble.

3.2 Network Data

3.2.1 Data Collection

Networks were collected on the day of the experiment by asking each participant in the experi-
ment if they knew other participants and to clarify the nature of the relationship (family or friend).
Since the experimental participants are sampled from a larger population of interest, collecting
this data on the day of the experiment means that the networks are sampled. Note that while
Chandrasekhar and Lewis (2016) warn of the pitfalls of doing regression with network statistics
using sampled networks, node sampling is a standard assumption in dyadic regression.18 How-
ever, when we seek to measure how nodes are embedded in networks, node sampling induces
some form of measurement error. At its most benign this will cause measurement error in higher
level network statistics. For example, distance-2 or 3 connections may be omi�ed if the mediating
nodes are not sampled.19

3.2.2 Social Network Summary

�e main results in this paper use the network of friends and family unrestricted by location.20

Details of the social network characteristics for this network are presented in Table 3. Experimen-
tal groups vary in size by municipality, ranging from 9 to 87 participants in each experiment. On
average, around 34 people a�ended. �e friends and family networks tend to be sparse, with an
average density of 5.6%. �is indicates that of all potential connections (within the municipality),
only about 1 in 20 exist. �e networks are moderately clustered with a clustering coe�cient of

18See, for example, Graham (2020).
19One robustness check to address resulting issues from sampled networks might be to simulate the sampling

process. To do this, I would drop nodes at random from the dataset (or sample nodes without replacement), recompute
all network statistics, and re-estimate the regression results for various sampling rates and draws.

20In contrast, the main results of A�anasio et al. (2012a) use the close friends and family network.
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34.6%. �is means that respondents know one third of the people in their neighborhood’s neigh-
borhood.21 Closeness in the data is 0.55, suggesting we can think of the average distance between
dyads to be around 1.8 steps in these networks.22 Using the Walktrap community detection algo-
rithm, we see detected communities of average size 3.93.

4 Empirical Strategy

4.1 Dyadic Regression Speci�cations

To test the explanatory power of various measures of the scope of risk pooling, I use dyadic
regression, an econometric model of network formation. In these regressions, each pair of par-
ticipants (i.e., a dyad) is treated as an observation. �erefore, I translate the measures described
in section 2 into dyadic measures of network proximity. Based on the structure of the data, I only
include dyads that were in the same municipality, since the meetings for the �eld experiment
took place at the municipality level.

4.1.1 Main Speci�cation

We start with a simple speci�cation that seeks to explain co-membership in risk pooling groups
using friendship or family ties in social networks. All dyadic regression speci�cations share a
common outcome: co-membership in the experimental risk pooling group. �at is, in the in-
centivized experiment, do participants i and j join the same risk pooling group? �e right hand
side regressors are all constructed from the real world social networks. Hence, we seek to ex-
plain dyad-level behavior in the experiment based on participants’ real world social networks.
From the results of A�anasio et al. (2012a), we already know individuals tend to join the same
experimental risk pooling group if they are close (geographically proximate) friends or family.
However, other measures of social proximity are not tested. Hence, I seek to test other measures
of risk sharing in comparison to the importance of friends and family.

If some additional measure is to add value above direct connections, it should be able to ex-
plain variation in co-membership in experimental risk sharing groups above and beyond these
other measures. �e �rst set of estimates focuses on three kinds of dyads: friends and family, sup-
ported relationships, and co-membership in a detected community. A dyad is de�ned as being

21More formally, clustering coe�cient answers the question: if ij and ik exists in the network what is the prob-
ability that jk is in the network as well?

22More precisely, closeness is computed by taking the average of the inverse of shortest path distance for nodes
in the network. When nodes are not in the same component, the shortest distance is∞, and so we take closeness
to be 0. A value of closeness approaching one suggests that nodes are are rarely more than a step away from each
other, on average. As closeness approaches zero, nodes are very far, or more likely in separate components.
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between friends or family if both i and j recognize friendship or family ties. Second, this rela-
tionship is supported if there is a third respondent who is in the network of a connected dyad.
Finally, as the name suggests, a pair of respondents are co-members in a detected community if
both belong to the same detected community. (Further detailed descriptions of these dyads are
presented in section 4.2.) �e main speci�cation is as follows:

Groupij = αv + β0Sij + β1Aij + γCij + εijv (3)

where αv is a municipality �xed e�ect, Groupij is an indicator variable equal to 1 if i and j

joined the same experimental risk pooling group, Sij is an indicator equal to 1 if i and j are in
a supported relationship, Aij is an indicator equal to 1 if a shared friend or family tie is present,
and Cij is an indicator equal to 1 if i and j are in the same detected community. Starting from
the baseline that β1 > 0, we want to test β0 > 0 and γ > 0 conditional on the inclusion of Aij

in the regression. β0 > 0 implies supported connections are more likely to join a risk pooling
group. On the other hand, γ > 0 indicates that perhaps not everyone in the risk pooling group
falls within the network neighborhood.

4.1.2 Longer Walks: Increasing the Radius of Risk Pooling

While detected communities may be one way we see increased scope of risk pooling, it may be
that anyone within a speci�c radius is important for risk sharing. To test this, I include dummies
for those dyads who are 2 and 3 steps from each other. To test this, I include these indicators for
“longer walks” on their own as as with measures of support and community. �is speci�cation
can be wri�en

Groupij = αv + β0Sij +
3∑

s=1

βsA
s
ij + γCij + εijv (4)

where As
ij = 1 indicates that the shortest path between i and j is of length s. Here, I further test

whether βs > 0 for s = 2, 3. Similar to the previous tests of γ, tests of βs indicate that perhaps
not everyone in a single individual’s risk pooling group falls within the network neighborhood.
If rejected, these tests indicate that those further-�ung members in an individual’s social network
are good candidates for pooling risk. However, since community co-membership and distance are
closely related, the correlation when accounting for this measure is likely more meaningful. In
terms of the magnitude of these e�ects, qualitatively, I would expect that closer dyads are weakly
more likely to match, i.e., β1 ≥ β2 ≥ β3 > 0.
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4.1.3 Fully Interacted Speci�cation

Finally, there is a great deal of heterogeneity in the dyads of respondents who are co-members
in communities, including the distance between dyad members and whether their relationship is
supported by a third respondent. �erefore, it may be interesting to examine detected communi-
ties in interaction with these other measures. Moreover, this allows me to �exibly estimate excess
probability of co-membership in risk pooling group conditional on dyad-level features. Extending
the model above, I write a full speci�cation which includes interactions between support, friend
and family ties, and community co-membership:

Groupij = αv + β0Sij +
3∑

s=1

βsA
s
ij + γCij + δ0SijCij +

3∑
s=1

δsA
s
ijCij + εijv. (5)

Here, I expect dyads within communities (at a given distance) are more like to match than those
dyads between communities. �at is, I test δs > 0 for s ∈ {1, 2, 3}. In addition, excess proba-
bility of co-membership can be estimated for each of nine dyad types (relative to dyads who are
not connected, supported, or co-community members). For computation for each of these dyad
speci�c means, see Table 4.

4.2 Variable Construction

4.2.1 Co-Membership in Experimental Risk Pooling Groups

�e outcome of interest in the dyadic regression is whether or not a dyad of individuals joined
the same experimental risk pooling group. Being in a risk pooling group with the other member
of the dyad is referred to as co-membership in the risk pooling group. Note that groups are non-
overlapping: each participant can only be in one group. For i ∈ Groupi and j ∈ Groupj , we
de�ne Groupij = 1(Groupi = Groupj).23

4.2.2 Friends and Family Network

�e explanatory variables of interest are constructed from the network survey data. In contrast
to the experimental risk pooling groups, this is a network of real-world friendships and family
ties. We start by forming an undirected and unweighted friends and family graph g, where ij ∈ g
if either i recognizes j as a friend or family member or j recognizes i . For a graph g, I de�ne

23I use an indicator function de�ned

1(condition) =
{

1, if condition is true
0, if condition is false . (6)

14



the adjacency matrix Aij = 1(ij ∈ g). For second order connections, we look for friends of
friends (or family of friends, friends of family, and so on). In terms of graph theory, we de�ne
these second order connections as all dyads that have a minimum distance of 2 between them
A2

ij = 1(min distance(i, j) = 2) where distance is the number of steps when traveling over edges
between the two nodes.24 �ird order connections are de�ned as any dyad with a shortest path of
3, such thatA3

ij = 1(min distance(i, j) = 3). Finally, supported relationships are any dyad where
the two members share a third friend in common. Using graph theory representation, supported
relationship are de�ned as Sij = 1(ij ∈ g and ∃k such that ij, jk ∈ g). For the close friends and
family network, these de�nitions still apply, we simply reconstruct g. In particular, we restrict
ij ∈ g to only occur if both i and j both recognize friendship or family ties and i and j also are
geographically proximate to each other.

4.2.3 Co-Membership in Detected Communities

In addition to the above network variables, I propose an additional candidate measure based on
community detection. Community detection splits households in the risk sharing network into
discrete groups within villages based on network structure of the friends and family network,
g. Speci�c approaches for this assignment are discussed in detail in Section 4.4, but I can de�ne
community co-membership with just an understanding of the eventual assignment. In particular,
each respondent is assigned to exactly one community, where commi�ees are composed of at
least one respondent. We say i ∈ Ci and j ∈ Cj and de�ne community co-membership as
Cij = 1(Ci = Cj).

4.3 Group Speci�cations: Network Structure and Defaults

4.3.1 Econometric Speci�cation

Are networks tied to the rate of default within experimental risk pooling groups? To provide
context, I build on the analysis from Appendix Table A1 of A�anasio et al. (2012a). Whereas this
table presents results using the close friends and family network, I use the friends and family
network. In particular, at the group level, I estimate the following speci�cation:

Pr(Default|G, v) = αv + βNG + γDensity(G, .) + δNG × Density(G, .) + θX̄G + εGv (7)

where NG is the size of group G, Density(G, .) is one of a set of network densities, X̄G is a set of
controls consisting of group means, and αv are municipality �xed e�ects. As in A�anasio et al.

24�e minimum distance is the number of steps one would have to take through the graph to travel from i to j.
We could also write this more laboriously as A2

ij = 1(ij 6∈ g and ∃k such that ik, kj ∈ g). Indeed, second and third
order connections are computed similarly in the data.
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(2012a) I expect γ < 0 and δ > 0. �at is, I expect defaults to fall in network density, but for this
e�ect to a�enuate as groups grow larger.

4.3.2 Variable Construction

I use �ve de�nitions of network density: supported density, distance-1 density, distance-2 density,
distance-3 density, and co-community density. (By comparison, A�anasio et al. (2012a) computed
only distance-1 density within the close friends and family network.) Density is computed by tak-
ing in the number of dyads within the group with the given characteristic (e.g., “are connected”)
over the total number of dyads within the group. More formally, I compute supported density25

as
Density(G,S) =

∑
i,j∈G Sij

2NG(NG − 1)
, (8)

distance-1 density as

Density(G,A) =

∑
i,j∈GAij

2NG(NG − 1)
, (9)

and community density as

Density(G,C) =

∑
i,j∈GCij

2NG(NG − 1)
. (10)

Distance-s density generalizes network density, includes all dyads of minimum distance less than
s.26 More formally I compute Distance-s density,

Density(G,As) =

∑
i,j∈G

∑s
t=1A

t
ij

2NG(NG − 1)
. (11)

4.4 Community Detection

I use the Walktrap community detection algorithm in the following section and argue for its
relevance to risk sharing (Pons and Latapy, 2004).27 In work not presented here, I also use the
edge betweenness algorithm introduced in Girvan and Newman (2004), but the results do not
meaningfully di�er.

Intuitively, the Walktrap algorithm mimics the �ow of transfers on networks. Consider a risk
sharing process where a large gi� is given to a randomly chosen household in a risk sharing net-
work. �e household gives a gi� to a (network) neighboring household who is relatively less well

25Note that I divide the density calculation by two because summing over all entries of the relevant adjacency
matrix double-counts the number of connections.

26It may more accurately be called shell-s density, though I retain earlier language for rhetorical consistency.
27While it is perhaps intuitive to approach �nding these communities using an approach that relies directly on

risk-pooling data, this is di�cult to come by. For example, the approach described in appendix 6.2.2 su�ers in its
ability to di�erentiate unions of small risk pooling groups from larger risk pooling groups.
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o� than they are, sharing their positive shock equally. Having received this gi�, this household
is also is obligated to share again with their own worse o� neighboring household, provided they
are not worse o� than all of their neighbors. �is process of risk sharing continues as those who
receive a gi� re-asses their standing. One can imagine progressively smaller transfers “walking”
randomly through the network. Households who are close to the initial recipient household will
have a high probability of receiving a transfer, while those far away will have a low probability.
Likewise, even if one does not receive a transfer in the �rst step, if a household is connected to
many of the same households as the one receiving the prize, they have additional chances for a
gi�. We would expect that within a tightly knit portion of the network, most o�en the gains from
the positive shock will not make it far, instead being “trapped” in the local network.

�is thought experiment mirrors the Walktrap algorithm. A random walker starts at a random
node i and moves to an adjacent node with probability 1/d(i) where d(i) is the degree of i. �is
is repeated for s times and the landing node k is recorded. �en nodes are termed similar if,
controlling for landing degree, they tend to land on the same nodes. Each node starts as its
own community. Using this measure of similarity, we use a two step process. We merge the
most similar adjacent nodes, and then recompute the similarities. �is process continues until all
nodes are merged into one community. �en, as in the edge betweenness case, we are le� with a
tree of merges. We arrive at an assignment by cu�ing this tree at the highest modularity (Pons
and Latapy, 2004).28 See Appendix 6.2.2 for more details about computation of this statistic.

4.5 Robustness

4.5.1 Interpreting the Estimated Coe�cients

While understanding the measurement of social networks is of interest, the microeconomics of
networks is a �eld in which the “credibility revolution” o�en meets practical limitations. Net-
works are interesting because they are the source of many strategic interactions. When the in-
centives for network formation rely on many interrelated strategic factors, isolating the causal
e�ect of speci�c network structure may be di�cult. �erefore, rather than arguing that net-
work structure causes co-membership in risk pooling groups, I opt to inform the reader of what
assumptions are necessary to credibly interpret the estimates as causal.

In particular, in the absence of experimental manipulation of the network, one would have to
rely on a selection-on-observables approach. However, we have at least one advantage from the
data at hand in that the risk pooling experiment was conducted a�er real world networks were
realized. �us, the interpretation of the estimated results should not su�er from the possibility of

28Modularity is the sum of connections above expectation occurring between individuals within a community.
High modularity indicates that communities are tightly knit, so we choose the community assignment with maxi-
mum modularity.
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reverse causality whereby new connections made during the experiment are integrated into the
reported network. To this end, I account for a ba�ery of potential sources of omi�ed variable bias:
common shocks, popularity, and homophily. Even a�er accounting for the factors below, it could
still be the case that the social network structure and risk pooling membership are the result of
unobservable di�erences in dyad level relationships. �us, a reader would need to believe that I
have accounted for the universe of possible factors.

As a robustness check, I include further controls in the empirical speci�cation. First, common
shocks, such as those arising from experimental conditions, may ma�er. �ese common shocks
might include any variation in the execution of experimental protocols during the experiments.
To this end, I include municipality level �xed e�ects in all regressions to control for municipality-
invariant features of group formation. Second, certain individuals may be more popular within
networks due to their existing characteristics. For example, if it is more prestigious to have rich
friends, wealthier people may have more expansive networks than they would otherwise. �is
e�ect would manifest itself in both social network structure and choices made in forming exper-
imental risk pooling groups. To control for this type of bias, I include the sum of (log) income,
education, risk preferences, and age to control for factors that might drive popularity. �ird, we
also consider other characteristics that might serve as measures of social distance. Respondents
who are closer in social, economic, and geographic space tend to be more likely to connect in
social networks (McPherson et al., 2001). Hence, I control for the di�erences in gender, (log)
income, education, whether the respondents live in an urban area, risk preferences, and age.

4.5.2 Estimation and Standard Errors

I estimate the above speci�cations using linear probability models with municipality level �xed
e�ects. To correct for non-independence of standard errors (as in A�anasio et al. (2012a)) I cluster
at the municipality level. While one accepted approach is to use dyadic-robust standard errors
(Fafchamps and Gubert, 2007; Cameron and Miller, 2014; Tabord-Meehan, 2019), clustering at a
municipality level tends to be more conservative.

5 Results

5.1 Experimental Risk Pooling and Network Structure

5.1.1 Main Results: Support, Neighborhood, and Community

How well do these measures of the network explain co-membership in experimental risk pooling
groups? Across all speci�cations reported in table 5, supported friends or family, friends or fam-
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ily, and community co-membership enter positively and signi�cantly (we always reject β0 = 0,
β1 = 0, and γ = 0 at the 99.9% con�dence level).29 However, the magnitudes of the estimates vary
by speci�cation. In particular, the three measures are strongly correlated, and may be picking up
some overlapping information about network structure. Hence, I prefer to focus on speci�cation
(7), which includes all three. Here, being in the same community is associated with a 6.2 percent-
age point increase in joining the same risk pooling group, being in the network neighborhood is
associated with a 7.6 percentage point increase in joining the same risk pooling group, and being
in a supported relationship is associated with a 8.3 percentage point increase in the probability
of joining the same risk pooling group.

First, this pa�ern of results con�rms that those who are friends or family in social networks
tend to pool risk together (Fafchamps and Lund, 2003; Fafchamps and Gubert, 2007; A�anasio
et al., 2012a). Second, this reinforces that support drives risk pooling over and network connec-
tions as might be suggested by Murgai et al. (2002) or Jackson, Rodriguez-Barraquer, and Tan
(2012). Finally, we see that detected communities drive risk sharing above and beyond these
previously explored network measures. �ese detected communities resemble theoretical con-
structs seen in Ambrus, Mobius, and Szeidl (2014) in particular. To the degree that these ex ante
communities proxy for the ex post risk sharing islands therein, we might view these results as
con�rmatory of the authors’ theory.

5.1.2 Longer Walks: Distance-s Connections

While the basic measures of risk pooling seem to do well on their own and in concert, the same
is not true distance-s connections. In speci�cation (1) of table 6, distance-2 connections enter
signi�cantly (at the 99.9% con�dence level). However, the size and signi�cance of the estimated
relationship falls considerably with the inclusion of community dummies in speci�cations (2)
and (3). �e size of the association falls by roughly half and enters either insigni�cantly or only
signi�cant at the 95% Con�dence level. For their part, distance-3 connections enter insigni�cantly
across all speci�cations.

In concert, the results from the main speci�cations and these start to tell a story of “meso-
level” risk pooling. If we think of the most macro-level risk pooling as occurring at the village
(here the experiment level) and the most micro-level risk pooling occurring at the network neigh-
borhood, the results here at an an intermediate level. Instead we see risk pooling that falls far
short of the diameter of the giant component of the observed networks, but extends beyond the
immediate network neighborhood.

29�is table includes all combinations of the three variables.
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5.1.3 Interactions of Measures

Speci�cations (4)-(7) of table 6 focus on the interaction of each of these various measures with
community membership. Distance-1 and distance-2 ties tend to enter signi�cantly. Because
distance-1 and supported distance-1 ties are so strongly correlated, this limits the number of sig-
ni�cant interactions. My interpretation is that the same set of dyads is re�ected in various results
in speci�cations (4)-(7), but where this set appears in the regression di�ers by which measures
are used. To cut through the complexity I focus on tests and interpretation of the full speci�-
cation (7). In this speci�cation, only three terms enter signi�cantly: friends and family (99.9%
con�dence level), distance-2 connections (95% con�dence level), and the interaction of commu-
nity membership and supported connections (99% con�dence level). �is yields a striking result:
while communities themselves are still important in explaining the formation of risk pooling
groups, the interaction of detected community with support arises as a most important factor in
the formation of risk pooling groups.

5.1.4 Strong and Weak Ties

A �exible, fully interacted regression speci�cation allows us to inspect the excess probability of
co-membership in an experimental risk pooling and gives us a picture of strong and weak ties in
networks. In �gure 6 (based on the formulas in table 4) we see that not only does the probability
of co-membership in a risk pooling group tend to increase the closer dyads are in terms of net-
work distance, support, and community membership, but also community membership actually
ampli�es these other factors. As noted above, the shorter the distance between two respondents,
the higher the probability of co-membership regardless of community status. As seen in previous
regression results, distance-3 ties tell us li�le about the probability of co-membership, whereas
shorter distances are more informative. Further, ties within detected communities are (weakly)
be�er at explaining risk pooling group formation at every distance.30 Finally, it becomes obvi-
ous that support only seems to ma�er for within community ties. �at is, supported ties across
communities are no be�er than unsupported distance-1 connections in terms of co-membership
in experimental risk pooling groups.

5.1.5 Network Structure and Defaults

Network density does not correlate with group level default rates (at least in the standard friends
and family network). �e results are both statistically insigni�cant at all conventional levels of
statistical signi�cance, tend to be economically small in magnitude, and are facing in the opposite
direction of expectation. For example, a 1 percentage point increase in distance-1 density at the

30Weakly stronger in the sense that we can’t always reject the null hypothesis that the means are equivalent.
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group level corresponds to a 0.036 percentage point increase in the default rate (table 11). On
the other hand, when these results are run using the close friends and family network, they
appear in the same pa�ern as A�anasio et al. (2012a), where default falls in network density,
and this e�ect is a�enuated as groups grow larger (table 12). In terms of success explaining the
reduction in defaults, no particular statistic does much be�er than another, and all are strongly
correlated. In interpreting these results, it is important to note that is not clear that we would
expect to see reductions in defaults to be correlated with density. In particular, one could imagine
a theoretical model where groups grow only up to a size where very few group members default.
�is size would be endogenous on the underlying network structure. �at is, as network structure
improves for the purposes of preventing such behavior, group size will grow, “testing the limits”
of such improvements in structure.

5.2 Robustness of Results

5.2.1 Close Friends and Family

I test for robustness using a di�erent measure of the friends and family network, limiting the
measure to close friends and family where closeness is de�ned as being geographically proximate.
I �nd the results are robust to this di�erent measure. Looking at table 7, coe�cient estimates are
a bit larger and noisier, owing to the sparser nature of the close friends and family network.

5.2.2 Kitchen Sink Regressions

Results from “kitchen-sink” regressions broadly accord with their counterparts. �ese results
can be seen in tables 9 and 10. For main results, pa�erns of signi�cance (and rough magnitudes)
replicate exactly from table 5. Comparing tables 10 and 6 to examine longer walks and interaction
e�ects, there is not a clear pa�ern of changes in coe�cients. However, these regressions do add
slightly to the precision of the estimates. For example, while magnitudes change slightly between
the two tables in speci�cation (7), �gure 6 can be closely replicated.

6 Conclusion

6.1 Discussion

6.1.1 Summary

Using dyadic regression, I explore the explanatory power of measures of network structure in
explaining experimental risk-pooling outcomes. In doing this, I specify the scope of risk pooling
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conditional on network structure. �is allows me to correlate likely measures of risk sharing net-
works and groups with a “ground-truth” measure of risk pooling. Of the dyadic measures tested,
three tend to be particularly useful in understanding the scope of risk pooling: direct connections,
supported connections, and co-membership in communities. �e third of these measures relies
on community detection, a novel method to be applied to the study of risk pooling. In addition,
distance-2 connections sometimes explain co-membership in experimental risk pooling groups,
though these estimates are not stable. Between community co-membership and distance-2 con-
nections, we see that the scope of risk pooling tends to extend beyond ones direct connections.
Distance-3 connections consistently fail to explain co-membership in risk pooling groups.

6.1.2 Meso-Level Risk Pooling

�ese results point toward risk pooling that takes place at a meso-level between the village (or
municipality) level and bilateral level. �is understanding might guide how we think about the
welfare derived from informal risk pooling. For example, we should be wary of any welfare
calculations done under the assumption that all members of a village or municipality share risk.
On the other hand, models that assume only bilateral risk sharing may be conservative in this
regard. When considering the literature on risk pooling, theoretical models that allow for this
kind of meso-level risk pooling become more intriguing, such as the work by Genicot and Ray
(2003), Bloch, Genicot, and Ray (2008), and Ambrus, Mobius, and Szeidl (2014), among others.
Moreover, these results have a special interpretation in relation to Ambrus, Mobius, and Szeidl
(2014). Detected risk pooling communities are highly related to the risk sharing islands described
by those authors. However, they di�er in a few important ways. Risk pooling communities map
the ex ante structure of risk sharing networks while risk sharing islands map ex post consumption
smoothing conditional on existing networks and realized shocks. �is suggests that risk sharing
islands arise ex post where risk pooling communities exist ex ante. �e empirical results presented
in this paper are consistent with this story. Substituting the experimental risk pooling groups for
islands, we see that co-community members tend to join the same risk pooling islands.

6.1.3 Practical Contributions: Strength of Ties and Spillovers

Despite establishing a meso-level of risk sharing, not all network structure is equal. It is still the
case that more proximate dyads (in terms of network structure) are more likely to join the same
experimental risk pooling group. First, we see that there is a set of individuals smaller than the
network neighborhood who we can regard as stronger ties. In particular, we see that those dyads
who have supported connections and are community co-members are more likely to join the same
experimental risk pooling group than other sets of dyads. Second, we see through community
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measures and distance-2 connections that a weaker form of risk pooling tends to extend beyond
this neighborhood. �is fact is interesting for the collection of networks data, as this work shows
that we can detect strong and weak ties even if we measure only one social network of con-
stant intensity. �is is particularly useful for �eld researchers since network data can be di�cult
and time consuming to collect. Finally, when network data is at hand and spillovers are present,
community detection may complement other methods in bounding the e�ect of spillovers medi-
ated by networks. �ese detected communities might be useful for estimating treatment e�ects
themselves and in providing “sanity checks” for other assumptions about how spillovers decay.

6.2 New and Unanswered�estions

6.2.1 Community Detection and Economic Networks

While risk pooling is an exciting application of community detection, community detection may
prove valuable for places where networks are relevant to the provision of goods. Similar algo-
rithms have already been used to understand the limits of occupational mobility (Schmu�e, 2014).
Communities may be relevant to the �ow of information in economies. Likewise, bipartite com-
munity detection could identify clusters of �rms and consumers in buyer-seller networks (Barber,
2007).

6.2.2 Homophily and Network Formation

New questions arise from community detection. If detected communities bound the scope of
risk pooling, it becomes interesting how these communities are composed relative to network
neighborhoods. In particular, it is o�en the case that network formation is guided by homophily,
or the principal that “birds of a feather �ock together” (McPherson et al., 2001). Such homophily
plays a strong role in risk-sharing networks in particular (Fafchamps and Gubert, 2007; A�anasio
et al., 2012a; Barr et al., 2012). Are communities homophilous to the same degree as network
neighborhoods?
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Figure 1: Friends and family network with distances from an origin node overlaid. Here 0 is the
origin, 1 indicates the set of distance-1 connections, 2 indicates the set of distance-2 connections,
and so on.
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Figure 2: Friends and family network with common friends of an origin node overlaid. Here O is
the origin and SN indicates the set of supported neighbors.
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Figure 3: Friends and family network with community detection overlaid. Here O is the origin
and C indicates those in their detected community.
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Figure 5: Friends and family and experimental risk pooling groups plo�ed as a network. Node
color is experimental risk pooling group membership. Black edges are connections within the
friends and family network, whereas red edges represent co-membership in the risk pooling
group where no friends and family network already exists.

32



●

●

●

●

●

●

●

●

0.0

0.1

0.2

0.3

Distance 3 Distance 2 Distance 1 
+ Unsupported

Distance 1 
+ Supported

Friends and Family Network

E
xc

es
s 

P
ro

b.
 o

f C
o−

M
em

be
rs

hi
p 

in
 E

xp
. R

is
k 

P
oo

lin
g 

G
ro

up

●

●

Between Communities

Within Communities

Figure 6: Strong and weak ties on the extensive margin: Excess probability of dyadic co-
membership in an experimental risk pooling group conditional on network relationship.
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Table 1: �e Scope of Risk Sharing in the Literature

Paper Type Assumption Result
Dercon and Krishnan (2000) E Intra-Household -
Goldstein (2004) TE Intra-Household, Bilateral
Fafchamps (1999) T Bilateral -
Jack and Suri (2014) E Bilateral -
Fafchamps and Gubert (2007) E Bilateral -
Fafchamps and Lund (2003) E Bilateral (Friendship, Kinship) -
de Weerdt (2002) E Bilateral Network (Common friends)
de Weerdt and Dercon (2006) TE Bilateral, Network (2-Shell) -
Ambrus, Mobius, and Szeidl (2014) T Bilateral Group/Network (Island)
Fitzsimons et al. (2018) E Group (Kinship) Extensive/Intensive Trade-o�
Bloch et al. (2008) T Bilateral Network (Flows)
Murgai et al. (2002) TE Network (Clusters) Extensive/Intensive Trade-o�
Dercon et al. (2006) E Group (Funeral Society) -
Genicot and Ray (2003) T Group Bounded Group Size
A�anasio et al. (2012a) TE Group (Experimental) Risk Preferences, Friendship, Kinship
Bramoullé and Kranton (2007a) T Network (Flows - Component) Bounded Component Size
Bramoullé and Kranton (2007b) T Network (Flows - Component) -
Townsend (1994) TE Group (Village) -
Ligon (1998) TE Group (Village) -
Kinnan (2021) TE Group (Village) -
Chiappori et al. (2014) TE Group (Village) -
Type is T if the paper is theoretical, E if empirical, and TE if both. Papers are (imprecisely and qualitatively) ordered
by the scope of risk pooling modeled.
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Table 2: Incentive Structure for the Gamble Choice Game

Payo�
Gamble Low High Expected Value Standard Deviation

1 (safest) 3000 3000 3000 0
2 2700 5700 4200 2121
3 2400 7200 4800 3394
4 1800 9000 5400 5091
5 1000 11000 6000 7071
6 (riskiest) 0 12000 6000 8485
All amounts in Colombian pesos. Eeach gamble has a 50% probability of a low
draw and a 50% probability of a high draw.

Table 3: Network Characteristics

Statistic Friends and Family Close Friends and Family
Nodes 33.971

(11.954)
Density 0.056 0.026

(0.044) (0.022)
Clustering 0.336 0.425

(0.202) (0.301)
Closeness 0.547 0.742

(0.169) (0.162)
Community size 3.933 2.132

(2.614) (1.021)
Modularity 0.429 0.563

(0.170) (0.230)

Standard errors in parentheses.
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Proximity Within Community Between Communities
Supported β0 + β1 + γ + δ0 + δ1 β0 + β1

Distance-1 β1 + γ + δ1 β1

Distance-2 β2 + γ + δ2 β2

Distance-3 β3 + γ + δ3 β3

Distance-4+ γ

Table 4: Excess Probability of Community Co-Membership
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Table 5: Dyadic Regressions: Main Speci�cations, Friends and Family Network

Co-Membership in Risk Pooling Group
(1) (2) (3) (4) (5) (6) (7)

Supported 0.197∗∗∗ 0.0959∗∗∗ 0.152∗∗∗ 0.0827∗∗∗
(10.15) (4.38) (9.91) (4.02)

Friend or Family 0.176∗∗∗ 0.136∗∗∗ 0.104∗∗∗ 0.0759∗∗∗
(11.02) (10.96) (7.30) (5.19)

Same Community 0.123∗∗∗ 0.0655∗∗∗ 0.0703∗∗∗ 0.0622∗∗∗
(8.91) (6.17) (6.98) (6.07)

Constant 0.0906∗∗∗ 0.0880∗∗∗ 0.0861∗∗∗ 0.0815∗∗∗ 0.0879∗∗∗ 0.0828∗∗∗ 0.0817∗∗∗
(59.17) (53.44) (38.14) (34.40) (53.68) (35.49) (35.38)

N 88266 88266 88266 88266 88266 88266 88266
Muni FE Yes Yes Yes Yes Yes Yes Yes
t statistics in parentheses, standard errors clustered at the municipal level
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, all t tests one sided
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Table 6: Dyadic Regressions: Longer Walks and Interactions, Friends and Family Network

Co-Membership in Risk Pooling Group
(1) (2) (3) (4) (5) (6) (7)

Supported FF 0.0882∗∗∗ 0.0855∗∗∗ 0.00971
(4.37) (4.51) (0.45)

Friends or Family 0.193∗∗∗ 0.148∗∗∗ 0.0872∗∗∗ 0.0833∗∗∗ 0.0935∗∗∗ 0.0901∗∗∗
(11.99) (10.85) (5.33) (6.15) (5.82) (5.55)

Distance-2 FF 0.0388∗∗∗ 0.0183 0.0226∗ 0.0226∗ 0.0251∗
(3.27) (1.46) (1.78) (1.81) (1.98)

Distance-3 FF 0.00661 0.000132 0.00216 0.00371 0.00546
(0.64) (0.01) (0.20) (0.35) (0.51)

Same Community 0.0576∗∗∗ 0.0523∗∗∗ 0.0580∗∗∗ 0.0473∗∗∗ 0.0195 0.0185
(5.07) (4.85) (6.20) (4.64) (0.55) (0.52)

Supported × Same Comm. 0.0937∗∗∗ 0.101∗∗
(3.85) (3.09)

FF × Same Comm. 0.0870∗∗∗ 0.112∗∗ 0.0281
(4.59) (2.63) (0.64)

Distance-2 × Same Comm. 0.0222 0.0226
(0.57) (0.58)

Distance-3 × Same Comm. -0.00894 -0.00901
(-0.25) (-0.26)

N 88266 88266 88266 88266 88266 88266 88266
Muni FE Yes Yes Yes Yes Yes Yes Yes
t statistics in parentheses, standard errors clustered at the municipality level
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, all t tests one sided
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Table 7: Dyadic Regressions: Main Speci�cations, Close Friends and Family Network

Co-Membership in Risk Pooling Group
(1) (2) (3) (4) (5) (6) (7)

Close FF Supported 0.240∗∗∗ 0.0967∗∗ 0.162∗∗∗ 0.0914∗∗
(8.67) (2.87) (6.24) (2.80)

Close Friend of Family 0.215∗∗∗ 0.154∗∗∗ 0.146∗∗∗ 0.0903∗∗∗
(9.90) (8.11) (7.51) (4.55)

Same Cl. Community 0.156∗∗∗ 0.0716∗∗∗ 0.0907∗∗∗ 0.0698∗∗∗
(8.51) (4.23) (5.61) (4.11)

N 88266 88266 88266 88266 88266 88266 88266
Muni FE Yes Yes Yes Yes Yes Yes Yes
t statistics in parentheses, standard errors clustered at the municipal level
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.00140



Table 8: Dyadic Regressions: Longer Walks and Interaction E�ects, Close Friends and Family Network

Co-Membership in Risk Pooling Group
(1) (2) (3) (4) (5) (6) (7)

Supported Cl. FF 0.0810 0.0830∗∗ 0.0303
(1.91) (2.89) (0.89)

Close Friends or Family 0.191∗∗∗ 0.158∗∗∗ 0.102∗∗∗ 0.0459 0.0564∗∗ 0.0401
(8.38) (8.71) (4.02) (1.57) (3.09) (1.63)

Distance-2 Cl. FF 0.0670∗∗∗ 0.0439∗∗∗ 0.0223 0.0115 0.00959
(5.49) (3.47) (1.24) (0.58) (0.47)

Distance-3 Cl. FF -0.0233 -0.0355 -0.0319 -0.0212 -0.0204
(-1.39) (-1.74) (-1.62) (-0.98) (-0.93)

Same Cl. Community 0.0647∗ 0.0756∗ 0.0574∗∗ 0.0571∗∗ 0.00765 0.0260
(2.25) (2.40) (3.38) (3.39) (0.26) (0.89)

Supported Cl. FF × Same Cl. Comm. 0.117∗∗∗ 0.121∗∗∗
(5.45) (4.85)

Cl. FF × Same Cl. Comm. 0.132∗∗∗ 0.128∗∗∗
(3.58) (4.83)

Disance-2 Cl. FF × Same Cl. Comm. 0.0777∗ 0.0637∗
(2.51) (2.27)

Disance-3 Cl. FF × Same Cl. Comm. -0.00612 -0.0135
(-0.18) (-0.39)

N 88266 88266 88266 88266 88266 88266 88266
Muni FE Yes Yes Yes Yes Yes Yes Yes
t statistics in parentheses, standard errors clustered at the municipal level
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 9: Dyadic Regressions: Main E�ects, Controls

Co-Membership in Risk Pooling Group
(1) (2) (3) (4) (5) (6) (7)

Supported FF 0.201∗∗∗ 0.102∗∗∗ 0.167∗∗∗ 0.0947∗∗∗
(10.21) (4.79) (9.92) (4.58)

Friends and Family 0.176∗∗∗ 0.146∗∗∗ 0.104∗∗∗ 0.0805∗∗∗
(10.78) (10.49) (7.17) (5.52)

Same community 0.109∗∗∗ 0.0592∗∗∗ 0.0655∗∗∗ 0.0569∗∗∗
(8.21) (5.90) (6.71) (5.80)

N 88266 88266 88266 88266 88266 88266 88266
Muni FE Yes Yes Yes Yes Yes Yes Yes
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.00142



Table 10: Dyadic Regressions: Longer Walks and Interaction E�ects, Controls

Co-Membership in Risk Pooling Group
(1) (2) (3) (4) (5) (6) (7)

Supported FF 0.0761∗∗∗ 0.108∗∗∗ 0.00858
(3.78) (5.66) (0.40)

Friends and Family 0.172∗∗∗ 0.151∗∗∗ 0.0971∗∗∗ 0.0963∗∗∗ 0.0996∗∗∗ 0.0950∗∗∗
(11.20) (11.47) (6.61) (7.08) (7.36) (6.64)

Distance-2 FF 0.0513∗∗∗ 0.0399∗∗∗ 0.0316∗∗∗ 0.0290∗∗∗ 0.0289∗∗∗
(8.26) (6.61) (5.51) (5.00) (5.07)

Distance-3 FF 0.00502 0.000110 0.00440 0.00881 0.00958
(0.48) (0.01) (0.42) (0.81) (0.88)

Same Community 0.0438∗∗∗ 0.0442∗∗∗ 0.0547∗∗∗ 0.0423∗∗∗ 0.00887 0.0466∗
(4.10) (4.12) (6.40) (4.71) (0.42) (2.32)

Supported FF × Same Comm. 0.0814∗∗ 0.0685∗
(3.33) (2.12)

FF × Same Comm. 0.0802∗∗∗ 0.0847∗∗∗ 0.0276
(4.34) (4.71) (1.23)

Distance-2 × Same Comm. 0.0640∗∗∗ 0.0319∗
(4.01) (2.35)

Distance-3 × Same Comm. -0.0335 -0.0460∗
(-1.66) (-2.34)

N 88266 88266 88266 88266 88266 88266 88266
Muni FE Yes Yes Yes Yes Yes Yes Yes
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 11: Defaults by Group, Friends and Family Network

Proportion of Defaults in Risk Pooling Group
(1) (2) (3) (4) (5)

Group size 0.00350 0.00279 0.00314 0.00524 -0.000354
(0.93) (0.66) (0.71) (1.00) (-0.10)

Supported FF 0.0529
(0.71)

Group size × Supported FF -0.0134
(-0.71)

Friends and family 0.0364
(0.48)

Group size × Friends and Family -0.00769
(-0.41)

Distance-2 0.0130
(0.25)

Group size × Distance-2 -0.00513
(-0.42)

Distance-3 0.0377
(0.71)

Group size × Distance-3 -0.00763
(-0.65)

Community -0.0115
(-0.24)

Group size × Community 0.00409
(0.37)

Constant 0.242 0.243 0.250 0.225 0.243
(0.75) (0.75) (0.78) (0.70) (0.76)

N 526 526 526 526 526
Muni FE Yes Yes Yes Yes Yes
Outcome is proportion of defaults and all network variables are computed as densities.
t statistics in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 12: Defaults by Group, Close Friends and Family Network

Proportion of Defaults in Risk Pooling Group
(1) (2) (3) (4) (5)

Group Size -0.00221 -0.00441 -0.00586 -0.00656 -0.00415
(-0.56) (-1.08) (-1.23) (-1.22) (-0.94)

Supported Cl. FF -0.129∗
(-2.63)

Group size × Supported Cl. FF 0.0293
(1.90)

Close Friends and Family -0.155∗∗
(-3.25)

Group size × Cl. FF 0.0390∗
(2.61)

Distance-2 Cl. -0.118∗
(-2.46)

Group size × Distance-2 Cl. 0.0323∗
(2.61)

Distance-3 Cl. -0.114∗
(-2.40)

Group size × Distance-3 Cl. 0.0302∗
(2.42)

Cl Comm. -0.120∗
(-2.39)

Group size × Cl Comm. 0.0282∗
(2.15)

Constant 0.266 0.265 0.263 0.265 0.282
(0.84) (0.84) (0.82) (0.84) (0.89)

N 526 526 526 526 526
Muni FE Yes Yes Yes Yes Yes
Outcome is proportion of defaults and all network variables are computed as densities.
t statistics in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Community Detection

Modularity
To compute modularity, let ki and kj be the degrees of nodes i and j, respectively. Let m be the
number of edges in the graph. �e expected number of edges between i and j from this rewiring
is equal to kikj/(2m − 1) ≈ kikj/2m (2m since each link has two “stubs,” so to speak). I then
compare the expected number of links between i and j to the actual connections. Le�ing Aij be
the ijth entry of the adjacency matrix (de�ned Aij = 1(ij ∈ g)), I take the di�erence between
these two numbers:

Aij −
kikj
2m

.

I can interpret this di�erence as as observed connections over expected connections conditional
on node pair degrees. Le�ing Ci be the community membership of node i, connections over
expectation are weighted by the function Cij , where Cij = 1(Ci, Cj). Finally I aggregate to the
graph level and normalize by twice the number of links present:

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
Cij

�is serves as an easily computable and straightforward measure of the internal quality of com-
munities (Newman, 2011).

Hacking Community Detection for Risk Sharing
Consumption Smoothing

Another approach to �nding risk sharing communities combines panel data on consumption and
income with network data. Essentially, we build a dendrogram using a standard community
detection method (e.g., walktrap), but instead of using the o�-the-shelf tuning statistic (i.e., mod-
ularity) to cut the dendrogram, we use a risk sharing statistic. One way to accomplish this would
be to use actual risk sharing. With income and consumption at the individual or household level,
I estimate a risk pooling equation at all possible cuts of the dendrogram:

cit = αyit + γgt + εit (12)

where cij is consumption, yit is income (or income shocks), γgt are community-time �xed e�ects,
and εit is the error. In principle, we then choose the cut where α̂ ceases to fall.31 To the degree
that community assignments correspond between this algorithm and the o� the shelf method,
this should increase our con�dence in using o� the shelf network methods. �is however, still
leaves many questions unanswered. Is the best approach to choose a minimum tolerance in the
change in α̂, or would a penalty on the number of communities serve our purposes be�er?

31Why not the minimum value of α̂? Consider the case where you split a community with perfect risk sharing
in two communities. �e two resulting smaller communities will also display perfect risk sharing.
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Modularity and Transfer Data

Another possible approach using real risk sharing data is valuable when one can actually see
networks and transfers separately. �is might build a network where transfers have actually
taken place and compute modularity on this auxiliary network. Call τ the transfer network,
where ij ∈ τ if either i or j have made a transfer to the other. De�ning Tij = 1(ij ∈ τ), then I
can re-write modularity as follows

Q(τ) =
1

2m

∑
ij

(
Tij −

ki(τ)kj(τ)

2m

)
Cij.

�is may also be useful to handle larger scale networks like call data networks with transfers.
Notably, mobile transfers are much more sparse than voice and SMS calls.
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