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Abstract

What is the optimal rate of passing in professional football? We derive a simple model of
playcalling e�ciency in the NFL. E�ciency is highest when the play comes as a surprise and
falls when a more expected play is called. �at is, playcalling e�ciency is determined by a us-
age curve. We use an instrumental variables strategy to identify these usage curves on early
downs—estimating the e�ect of passing, expected passing, and their interaction on per-play
e�ciency. We propose two new instruments, the �rst of which is based on fumbles lost. More
speci�cally, we argue that conditional on total cumulative fumbles by each team, cumulative
fumbles lost serves as a valid instrument in each of these cases. �e second exploits docu-
mented negative autocorrelation in playcalling: the play a�er a pass tends to be a rush, and
vice versa. Using 15 years of play-by-play data, we use this strategy to estimate linear usage
curves, from which we recover the optimal early-down passing rate. On �rst and second
down, coaches have their quarterbacks drop back to pass about 51.7% of the time, whereas
the optimal rate is around 59.1%. �ese results imply coaches deviate from the optimal pass
rate, overestimating the value of surprise.
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1 Introduction

�e optimal pass-rush ratio in professional football has long been contentiously debated. �e

conventional wisdom instructs coaches to “establish the run,” as it is safer, and sets up the pass.

More recent analytical work suggests a more pass heavy approach (Schatz, 2003). Alamar (2006)

re-frames this debate as the passing-premium puzzle: National Football League (NFL) teams rush

an approximately equal number of passing and rushing plays, despite higher returns to passing.

Over the years, many approaches have been proposed to rationalize the apparent di�erence in

optimal pass rates and the observed rate of passing. �ese explanations include risk aversion

and defensive adjustments (Rockerbie, 2008; Jordan et al., 2009; McGarrity and Linnen, 2010).

�e availability of play-by-play data to the public has increased dramatically since the majority

of work was done. Open-source packages now allow anyone to pull data directly from league

sources. �is increased access has allowed for the development of a robust public analytics dis-

cussion.

Since 2006, passing has increased dramatically in the NFL, around 4.5 percentage points (Fig-

ure 1). Absent increases in passing e�ciency (relative to rushing), this might suggest that the

passing-premium puzzle has been solved. �at is, coaches have become wise to the work of an-

alysts and have responded by passing more. However, given the e�ciency of passing has also

improved relative to rushing, a clear alternative explanation exists: coaches have selected into

passing as the returns have increased. Given this large increase in both pass rate and passing

e�ciency, does the passing-premium puzzle persist?

To answer this question, we �rst need to return to a fundamental question in football analytics:

what is the optimal pass rate? Following work positing defensive adjustments as the primary

reason for persistent di�erences, we use a simple model of per-play e�ciency which allows the

e�ciency of passing and rushing to vary with their respective usage. Estimating the e�ect of

the probability of passing on passing and rushing e�ciency, we can infer the optimal pass rate.
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Figure 1: Evolution of NFL Pass Rate (le�) and Per-Play E�ciency (right), 2006-2020

However, just as selection into passing over the past 15 years may be driven by improvements in

passing o�ense, estimating usage curves means contending with how teams select into passing.

For example, coaches with strong passing o�enses may pass more o�en than their counterparts,

which would bias the estimation of usage curves.

To remove selection bias in estimating the parameters of this model, we introduce two new

instrumental variables for passing and expected pass rate. First, fumbles lost. In particular, we

argue that conditional on the number of fumbles by a team, the fumbles that team lose is an

important—and essentially random—determinant of game state, measured through win probabil-

ity or net score. �is change in game state forces teams to become more aggressive than they

otherwise would be, passing more o�en in order to score the points necessary to win the game.

Importantly, both the fumbling team and the opposing team realize this necessity, meaning our

instrument also forces changes in passing expectations for the defense. In this way, our approach

mimics the defensive adjustments of a long-term increase in passing probability. Second, we draw

on an negative serial correlation in playcalling documented by Emara et al. (2017). �at is, play-
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callers excessively switch between rushing and passing plays. To construct this instrument, we

use the previous play’s pass rate over expected (actual pass decision minus expected pass rate).

�is strips out game state—which we treat as endogenous—leaving only the “shock” of the previ-

ous pass or rush decision.

We draw on play-by-play data for 2006–2020 from the NFL to investigate these questions, as

well as predictive models of expected passing and expected points (Yurko et al., 2019; Baldwin,

2021). Using several instruments generated from fumbles lost (conditional on the number of total

fumbles, lost or otherwise), we use two-stage least squares (2SLS) to estimate: (1) the casual

e�ects of passing, (2) expected pass rate, and (3) the interaction of the two variables on per-play

e�ciency. We argue our instruments and speci�cation ful�ll the conditions outlined in Angrist

and Krueger (1999), so our estimates can be interpreted as local average treatment e�ects (LATE).

In the case of instrumental variables, LATE weights individual treatment e�ects by how strongly

they respond to the chosen instruments.

We �nd coaches deviate substantially from the optimal usage of passing, assuming usage

curves are linear. Using the 2SLS estimates on early downs, when the opponent expects a sure

rush, passing increases EPA by 1.35 points/play relative to a rush. However, when a sure pass is

expected, passing increases EPA by only 0.23 points/play. Embedding our instrumental variables

results with the model of usage curves, we �nd an optimal pass rate of 59.1%—compared to an

actual pass rate of 51.7%—a considerable deviation. However, this deviation is smaller than would

be recovered by naively estimating OLS. We a�ribute this to 2SLS not su�ering the same issues

of selection into passing as OLS. �is result suggests that coaches may overestimate the value of

surprise in football strategy, opting to rush too o�en on early downs.

We contribute to a literature that studies decision-making in professional football by intro-

ducing causal inference techniques to estimate usage curves. Alamar (2006) proposed the passing-

premium puzzle, se�ing the agenda for this line of research with the expected value of yards and

3



play success as an outcome. Rockerbie (2008) notes the importance of risk preferences in de-

cisions made under uncertainty. Studying the passing-premium puzzle as a portfolio problem,

they �nd that teams pass too o�en. Neither of these papers are able to trace usage curves and

account for the value of surprise in playcalling. In contrast Jordan et al. (2009) and McGarrity

and Linnen (2010) study playcalling in the context of game theory. McGarrity and Linnen (2010)

considers the decision to pass or rush as a mixed-strategy game, formally considering surprise as

an important element.1 If surprise ma�ers, passing should not drop o� considerably as passing

o�ense declines due to quarterback injuries, something they document empirically. We build on

this premise, which is implicit in our modeling approach. However, their empirical set-ups do not

allow these studies to manage omi�ed-variable bias in the decision to pass or rush.2 Emara et al.

(2017) studies a related topic, documenting negative serial correlation in playcalling. �ey explain

this negative serial correlation as a behavioral bias—that people have di�culty recognizing and

producing random sequences. In addition to drawing on this bias for an instrument, our results

complement this result. Speci�cally, by using instrumental variables to estimate usage curves, we

document that playcallers’ decision-making departs from expected points maximization in their

selection of rush and pass plays.

2 A Simple Model of Playcalling E�ciency

�e intuition of a usage curve is straightforward: the relative e�ciency of a given play is a func-

tion of how o�en it is used. More speci�cally, the more a play is used, the more opponents will

prepare for that play, which lowers its e�ciency. A stylizedmodel of playcalling can formalize this

intuition. In this model, a playcaller chooses a rush or a pass. �e playcaller’s goal is to maximize

e�ciency, which is the decision-weighted sum of passing and rushing e�ciency. While passing
1Jordan et al. (2009) is similar, studying the optimization of playcalling over a wider variety of margins.
2McGarrity and Linnen (2010) may be the strongest in this regard. However, selection bias could also drive this

null result (omi�ed factors could include game plans, game state, or weather conditions).
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e�ciency tends to be higher for NFL teams, we allow the e�ciency of both passing and rushing

to vary with the decision weights.3 In this way, we take the perspective that the more expected a

play call is, the easier it is to defend. In doing so, we draw implicitly on game theoretical models

of decision-making (Jordan et al., 2009; McGarrity and Linnen, 2010).

2.1 Optimization Problem

We write the playcaller’s optimization problem,

max
p

E(p) = p× PE(p) + (1− p)× RE(p) subject to 0 ≤ p ≤ 1, (1)

where E is overall e�ciency, RE is rushing e�ciency and PE is passing e�ciency, p is the pass

rate, and 1− p is the rush rate. We allow passing e�ciency and rushing e�ciency to rely on rush

rate, and call these e�ciencies usage curves.

2.2 General Case

�e �rst-order condition for an interior solution to (1) is:

p∗ × ∂PE(p∗)

∂p
+ PE(p∗) + (1− p∗)× ∂RE(p∗)

∂p
− RE(p∗) = 0. (2)

A closed form, explicit solution for p∗ requires further assumptions, laid out in Appendix A.1.

Moreover, to use the implicit function theorem, we would need to introduce some parameters

that should in�uence the optimal rate of p. Eschewing this, we work within a linear case. While

introducing functional form is a strong assumption, linearity is a natural �rst approach due to its
3We recognize this simple model abstracts from important aspects of the pre-play situation, which impact the

optimality of the play called. One can think of this as a model of playcalling with all else held equal. For example, this
model might apply to a speci�c situation, e.g., 1st & 10, or to a number of similar situations controlling for pre-play
observables (speci�cally, down, distance, and �eld position). We consider these factors further in the empirical work.
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simplicity.4

2.3 Linear Case

For simplicity of exposition (and later estimation), we assume a�ne usage curves, i.e., ∂PE(p)∂p is

constant. Wri�en another way: RE(p) = a+bp, PE(p) = c+dpwhere ∂PE(p)∂p = d and ∂RE(p)
∂p = b.

Solving this optimization problem gives the optimal pass rate,

p∗ =
1

2

(
c− a
b− d

+
b

b− d

)
. (3)

For details on solving the linear case, see Appendix A.2. How do we interpret this optimal pass

rate? First, note the denominator b − d. We call this the total relative change in e�ciency, the

rate at which rushing gains e�ciency minus the rate passing loses e�ciency as p increases. We

can break out the optimal pass rate into two e�ects:

1. �e E�ciency E�ect: 1
2

(
c−a
b−d

)
. �e numerator suggests that the be�er the pass game and

worse the rush game are overall (scaled by the total relative change in e�ciency), the more

one should pass.

2. �e Responsiveness E�ect: 1
2

(
b
d−b

)
. �is captures how responsive rushing is to passing

as a fraction of the total relative change in e�ciency. �e greater the rushing response, the

less one should pass.

Finally, are there ever times we should only pass or only rush? Yes. We can characterize these

corner solutions based on this optimal rush rate:

1. Only Pass: if c+ 2d ≥ a+ b, then p∗ = 1.
4�ere are added bene�ts when we consider estimation of usage curves, it also limits the potential for over�t-

ting. �is is particularly important when we consider low and high density regions of support. A moderately �exible
speci�cation may sacri�ce �t in low density regions for be�er �t high density regions.
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2. Only Rush: if a− b ≥ c, then p∗ = 0.

Given the existing passing premium it is hard to imagine case 2. We expect b ≥ 0, which means

this restriction bounds c − a ≤ 0 �is would require the average rush when opponents are

certainly expecting a rush to be more e�cient than the average pass, a very counterintuitive

condition. Case 1 is potentially plausible. First, given c ≥ a, this becomes an empirical question

of the slope of the usage curves. While the marginal value of passing is falling (d ≤ 0), it may

remain high enough to outpace marginal value of rushing. Nevertheless, it would be surprising

if this were the case generally.

2.4 Translating �eory to Estimation

In the empirical work below, we will estimate regression models of the following form:

E(p, Pass) = α+ β × p+ γPass + δ × Pass× p (4)

where p is once again the probability of a pass on that play and Pass is an indicator equal to 1 if the

called play was a pass, and 0 if it was a rush. �is speci�cation re-parameterizes our theoretical

model: α = a, β = b, γ = c − a, and δ = d − b. When a rush is called, we are estimating the

usage curve for rushing,

RE(p) = E(p, Pass = 0) = α+ β × p, (5)

and when a pass is called, we are estimating the usage curve for passing,

PE(p) = E(p, Pass = 1) = (α+ γ) + (β + δ)× p. (6)
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p ∗ = −
1

2





β + γ

δ



α

α + γ

RE(p) = α + β × p

PE(p) = (α + γ) + (β + δ) × p

E(p) = p × PE(p) + (1 − p) × RE(p)
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Figure 2: Our model of playcalling e�ciency. Plo�ed are the usage curves for passing (PE) and
rushing (RE). Additionally, we plot the e�ciency curve, which is the play call weighted sum of
these usage curves. For this example, we choose parameters so that we have an interior solution
(γ + β > 0 and β + γ + 2δ < 0).

Within this parametrization, optimal pass rate can be wri�en as p∗ = −1
2

(
γ+β
δ

)
. Likewise, the

e�ciency e�ect could be restated as −γ/2δ and the responsiveness e�ect as −β/2δ. �e usage

curves and the e�ciency curve are plo�ed in Figure 2 for an interior solution.5 Given credible

estimates of α, β, γ, and δ, we can gain a good idea of what the optimal rush rate would be,

holding situation constant.
5Figure A1 plots a corner solution where one should always pass and Figure A2 plots a corner solution where one

should always rush.
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3 Play-by-Play Data

We use play-by-play data fromNFL games during 2006 to 2020. �ese data include comprehensive

contextual and outcome variables, which document the state-of-the-game before the play and

describe what happened on each play. Contextual variables include down, distance to a �rst down,

time remaining in the half and game, yard line, current score, and the game’s time and location.

Additionally, outcomes of plays include whether a play was called as a pass or a rush, the yardage

gained, if the pass was intercepted, if the ball was fumbled and who recovered, whether a sack

was recorded, or if the team scored. �is data was obtained using the n�fastR package in R (Carl

and Baldwin, 2021).6

Included in the data are outputs from several public analytics models. �ese include expected

points and expected pass probability. We will describe these models brie�y, but urge readers

to consult more comprehensive sources for deeper understanding if they are not familiar. In

particular, for details on how each of these variables were computed, see Baldwin (2021), which

draws on the framework of Yurko et al. (2019).

First, we need a measure of e�ciency, for which we choose expected-points added (EPA).

Expected points have long been used to as a measure of football e�ciency, beginning with Carter

and Machol (1971). Using XGBoost, the expected-points model predicts the probabilities of a set

of scoring plays (touchdown, �eld goal, opponent touchdown, etc.) using variables related to time

in game, yard line, home, �eld type, down and distance, era, and timeouts remaining (Baldwin,

2021). �en the expected-points a�er a play is the probability weighted sum of these scoring plays

in that game state. EPA is the di�erence in expected points before and a�er a play. �is will serve

as our main measure of e�ciency.

Second, to estimate usage curves, we need the probability of a pass. �e Expected Pass (XPass)

model estimates this using variables related to yard line, home, �eld type, time in game, down
6Details about the package and downloading the data can be found at h�ps://www.n�fastr.com/.
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and distance, score di�erential, times, win probability, and era (Baldwin, 2021). �ese values are

provided for each play in the play-by-play dataset.

4 Empirical Strategy

4.1 Identifying Pass and Rush Usage Curves

4.1.1 Ideal Variation: A Playcalling Experiment

Suppose we could run an experiment, in which teams were induced to rush at a higher rate on

average (say, some proportion above what might be expected in a given situation). �is experi-

ment would run throughout a season. In early games a team chosen to rush more might reduce

their e�ciency through this more conservative approach. However, when preparing for future

games, opposing coaches watch and chart game �lm from previous matchups to understand their

“tendencies,” or the rate and situations in which teams call certain plays. A�er running this exper-

iment for the �rst three weeks of the season, tendencies would be set.7 If teams ran more, game

plans would be adjusted to be “stout against the run,” perhaps by changing defensive personnel

or alignments to “put more men in the box” (Football Outsiders).8 In this way, they would recoup

some of this lost e�ciency through greater success in their less frequently used passing game.

Given the exogenous variation generated by the experiment, we could estimate the causal impact

of usage on passing and rushing e�ciency in future games.

Using the linear model speci�ed above, we would estimate an e�ciency regression,

E�ciencyigp = α+ βp̄igp + γPassi + δPassi × p̄igp + uigp (7)
7Anecdotally, teams o�en watch the last three games an opponent has played or the last time a team played that

team, coach, or key player. �ese tendencies are then used in se�ing future game-plans.
8From Football Outsiders Glossary (cited in text), the box is “the defensive area between the o�ensive tackles

extending approximately seven yards deep in the defensive back�eld. �e defense will put more players “in the box”
the more intent they are on stopping a running play.”
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where i indexes team, g indexes game, and p̄igp is the experimental pass rate for play p. �is

research design would estimate the e�ect of passing, and the e�ect of passing rate on rushing and

passing e�ciency.

In the real world, any such experiments in playcalling are few and far between. If and when

they do occur, they would be hard to detect without inside information (i.e., p̄igp would remain

unobservable). Moreover, in the absence of such experiments, there is real and serious selection

bias. Teams who are be�er at passing will pass more. Teams that have fallen behind will also pass

more. �erefore, the endogenous nature of passing will bias observational estimates.

4.1.2 �asi-Experimental Variation: Fumbles Lost as an Instrument

�eplaycalling experiment described above is just one possible cause for which we could estimate

an e�ect. Just as coaches might respond to a persistent change in rush or pass rate, there are

many other causes for coaches to adjust their defensive decision-making to counter the pass or

the rush. Coaches do not just choose a gameplan and then rigidly execute it (in fact, this may

be the hallmark of a bad coach). Instead, they make adjustments on the �y, o�en in response to

the game state, which might encompass the net score and the probability a given team will win

the football game. It is well documented an increase in a team’s win probability decreases the

propensity to pass. However, using the natural variation in game state (within a game) faces a

similar issue with reverse causality: teams that are behind likely already have worse e�ciency

on o�ense, which is what caused them to be behind in the �rst place.

We propose to circumvent this challenge using an instrumental variables approach. Specif-

ically, we use a set of instruments based on cumulative fumbles lost to the opposing team to

remove the selection bias in expected pass rate and actual passing decisions. Football analysts

have identi�ed fumble recoveries as a random yet crucial component of winning football games.

For example, Massey-Peabody Analytics, which prepares predictive team ratings based on histor-
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ical data, down-weights statistics related to recovered fumbles in their team ratings: “recovered

fumbles, which greatly in�uence the outcome of games, […] are completely random” (Massey-

Peabody Analytics, 2012). Likewise, ESPN Analyst and Writer Bill Connelly identi�es fumbles

and fumble recoveries as a one of the �ve main factors in�uencing the outcome of college foot-

ball games (Connelly, 2014). More speci�cally, he identi�es it as a random factor in winning

football games. As he so adeptly puts, if you want to win football games, “you want that damned,

pointy ball to bounce in a favorable way.”

�erefore, cumulative fumbles lost is an a�ractive candidate for an instrument for pass rate

and expected pass rate. Speci�cally, we propose a set of instruments that includes fumbles lost

by the possessing team to the opposing team so far in the game and vice versa. �ese instruments

are conditional on cumulative fumbles by each team, which need not be random. �e properties

of cumulative fumbles lost relate closely to the three conditions needed for a valid instrument.9

First, if the number of past fumbles lost is random (conditional on total cumulative fumbles by

that team), the instrument is as good as randomly assigned and the independence assumption

is satis�ed. Second, if fumbles are important in driving swings in game state, and game state is

important determinant of pass rate, the instrument will be strong in the sense of Stock and Yogo

(2005). �is condition, referred to as instrumental relevance, can of course be checked in the

data. �ird, if fumbles themselves are a poor predictor of future performance (which they tend

to be), the instrument is related to the outcome only through the endogenous variable(s), and the

exclusion restriction is satis�ed.

Given these three conditions are met, our approach will identify the LATE under one assump-

tion: monotonicity. Monotonicity assumes everyone responds weakly in the same direction. In

our context, this means if the majority of playcallers respond to a fumble lost by increasing their

expected passing rate, monotonicity requires the remaining coaches do not change their expected
9See, for example, �eorem 4.5.1 in (Angrist and Pischke, 2009).
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passing rate. �at is, monotonicity is violated if and only if some playcallers responded to fumbles

lost by rushing more.10 �e LATE di�ers from the Average Treatment E�ect (ATE) in terms of

weighting when treatment e�ects are heterogeneous—individuals with stronger responses to the

instrument (in terms of passing) are weighted higher.

4.1.3 Lagged Pass Rate Over Expected

In addition to fumbles lost, we utilize a second instrument, which utilizes the fact that the de-

cision to pass exhibits negative serial correlation (Emara et al., 2017). �at is, coaches are more

likely to call a pass a�er a rush (and vice-versa). �is is an example of a more general behavioral

phenomenon: that people have di�culty producing random sequences of actions. �is also points

to an instrument for passing. As we show, this negative serial correlation results in instrumental

relevance. It is likely that this instrument is also monotonic in that if coaches avoid negative serial

correlation, they do not consistently build strategies around clustering plays.

To satisfy independence and the exclusion restriction, however, we must adjust the instru-

ment. Game state dictates that expected pass-rate is correlated across plays, in spite of this nega-

tive serial correlation. �erefore, we propose to instrument pass rate with lagged pass-rate over

expected. We net expected pass-rate out of the decision to pass. Pass-Rate Over Expected is

de�ned: PassOEigt = Passigt−XPassigt. In particular, expected pass-rate is the estimated proba-

bility of passing conditional on yard line, home team, �eld type, time in game, down and distance,

score di�erential, time, win probability, and era (Baldwin, 2021). �is measure captures the degree

of surprise at the decision to pass on the previous play and, thus, should pass independence and

the exclusion restriction. �at is, the surprise of passing on the previous play should not impact

EPA on the next play, except through play choice.
10�ere are circumstances when a coach might respond to a fumble lost by rushing more (e.g., in “garbage time”

when the game is all but decided) but these situations are rare and controlled for in the estimates through measures of
game state.
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4.1.4 Fixed E�ects

For additional robustness, we also propose the use of panel �xed-e�ects to control for o�ensive

quality. With panel data, �xed e�ects are widely used to control for time-invariant unobservable

characteristics. In this case we want to control for team-level propensity to pass (a function of

underlying talent), so we use team-year �xed e�ects to control for the propensity of a given team

to pass or rush.11

4.2 Main Speci�cations

4.2.1 Instrumental Variables Speci�cation

We aim to replicate an experimental setup as closely as possible. Our intuition is re�ected in a

simple approach: we de�ne games in which a fumble was lost as the treatment group and games

in which the o�ense fumbled but did not lose possession as the control group. However, such a

set-up would neglect the richness of the data. �erefore, we construct indicator variables for each

value of cumulative fumbles lost and each value of cumulative fumbles for both the possessing

and opposing teams.

Rather than a single treatment, this experiment has multiple treatments. For example, among

teams that fumble three times, we have three possible treatments corresponding to whether one,

two, or all three of these fumbles were lost. Finally, we interact our instrumental variables with

whether a pass was called on a given play. We use the resulting set of instruments in our two-stage
11While one might want to utilize a great deal of �xed e�ects to control for various situations, many of these

will overlap. In particular, it seems reasonable that a quarterbacks’ talent, a coaches’ o�ensive system, an o�enses’
supporting cast would a�ect the probability of calling a rush or calling a pass. However, many coach-quarterback
combinations are themselves invariant for long periods of time, so estimating coach-quarterback combinations might
be a bit fruitless. Moreover, while contracts might last �ve years in the NFL, talent surrounding the quarterback
�uctuates at a faster rate than the quarterback does. Using quarterback-year �xed e�ects controls for injuries to
starting quarterbacks, which tend to adjust the propensity to pass and using the year scale tends to proxy for the
turnover of the rest of team by coinciding with free agency. In addition, this coincides with installations of new
playbooks, a key point where o�ensive philosophy might change. Of course, we could cut these �ner, for example,
estimating QB-coach-year �xed e�ects that di�er from QB-year �xed e�ects only when there is a mid-season �ring,
injury, or quarterback change.
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least squares estimator, with the number of cumulative fumbles included as controls.

Before presenting the estimating equationswe use to estimate usage curves, we build intuition

by estimating the causal e�ect of calling a passing play on e�ciency.

Passigt = α1 (8)

+
K∑
k=1

η1kPost-k Team Fumblesigt +
L∑
l=1

θ1lPost-l Opp. Fumblesigt

+
N∑
n=1

λ1nPost-n Team Fumbles Lostigt +
M∑
m=1

π1mPost-m Opp. Fumbles Lostigt

+ κ1PassOEi,g,t−1 + ε1igt,

where i indexes team t play, and g game. Post-k Team Fumblesigt are indicator variables for num-

ber of cumulative fumbles by the team to that point, and Post-l Opp. Fumblesigt plays the same

role for fumbles by the opponent. Likewise, Post-n Team Fumbles Lostigt are indicator variables

for the number of fumbles lost by the team to that point and Post-m Opp. Fumbles Lostigt plays

the same role for their opponent. PassOEi,g,t−1 is passing over expected on the previous play by

the same team. Finally, Pass1igt is an indicator equal to one if team i passed on play t of game g.

�e ��ed value of this variable appears in the second stage, denoted with a hat:

y2igp = α2 + β2P̂assigt (9)

+

K∑
k=1

η2kPost-k Team Fumblesigt +

L∑
l=1

θ2lPost-l Opp. Fumblesigp + ε2igt,

where y2igp is an e�ciency variable of choice. While we will use EPA, it could be win probability

added (WPA), play success (de�ned as passing some yards or expected points threshold). Based on

the assumptions presented in Section 4.1.2, β2 is identi�ed as the LATE of passing on e�ciency.
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4.2.2 Usage Curves Speci�cation with Instrumental Variables

Our main results feature a more complex estimation. Since we have two endogenous variables as

well as their interaction, we instrument using both fumbles lost, lagged passing over expected,

and their interactions. We specify the �rst stage regressions:

y1igt = α1 (10)

+
K∑
k=1

η1kPost-k Team Fumblesigt +
L∑
l=1

θ1lPost-l Opp. Fumblesigt

+

N∑
n=1

(λ1nPost-n Team Fumbles Lostigt + µ1nPost-n Team Fumbles Lost× PassOEi,g,t−1)

+

M∑
m=1

(
π1mPost-m Opp. Fumbles Lostigt + φ1mPost-m Opp. Fumbles Lostigt × PassOEi,g,t−1

)
+ κ1PassOEi,g,t−1 + ε1igp,

where y1igp stands in for the two endogenous variables and their interaction. Again, the ��ed

values of these endogenous variables appear in the second stage, denoted with a hat:

y2igt = α2 + β2P̂assigt + γ2X̂Passigt + δ2 ̂Passigt × XPassigt+ (11)

+
K∑
k=1

η2kPost-k Team Fumblesigt +
L∑
l=1

θ2lPost-l Opp. Fumblesigt + ε2igt,

where y2igp is an e�ciency variable of choice. We identify β2, γ2, and δ2 as their respective LATEs,

which gives us credible estimates to �ll our our model of optimal playcalling. �is will serve as

our preferred speci�cation for estimating parameters of the usage curves model.
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4.2.3 Naive and Fixed-E�ects Speci�cations

For the uninstrumented naive speci�cation, we estimate,

y2igp = α2i + β2Passigp + γ2XPassigp + δ2Passigp × XPassigp + υ2igp. (12)

We use �xed-e�ects estimation to control for unobservable di�erences in teams, such as quar-

terback skill or o�ensive philosophy. In particular, we use a team-game �xed e�ect. Of course,

making a similar adjustment to speci�cation (9) and (11) allows us to estimate the 2SLS speci�ca-

tion with �xed e�ects. We do so as a robustness check.

4.3 Optimal Pass Rate

Plugging the coe�cient estimates into the parameters of the model of playcalling e�ciency, we

can draw usage curves and �nd a point estimate for the optimal pass rate,

p̂∗ = −1

2

(
γ̂ + β̂

δ̂

)
. (13)

We do so using the coe�cient estimates from our usage curves speci�cation, and infer the un-

certainty around this estimate using a cluster-robust jackknife. Hansen (2024, 2025) shows the

cluster-robust jackknife has a number of a�ractive properties in the context of a potentially het-

eroskedastic and cluster-dependent data-generating process, including that the variance estima-

tor is never downwards biased. As with the regressions, we cluster the jackknife at the team-game

level.
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Table 1: �e E�ects of Called QB Dropbacks on E�ciency. First and second down plays outside
of the two minute warning from 2006-2020. Controls omi�ed from table.

OLS FE 2SLS FE 2SLS
1st Stage 2nd Stage 1st Stage 2nd Stage

EPA EPA Pass EPA Pass EPA
(1) (2) (3.1) (3.2) (4.1) (4.2)

1 Pos. Fum. Lost 0.021∗∗∗ 0.023∗∗∗
(0.005) (0.004)

2 Pos. Fum. Lost 0.044∗∗∗ 0.046∗∗∗
(0.009) (0.009)

3 Pos. Fum. Lost 0.099∗∗∗ 0.100∗∗∗
(0.019) (0.019)

1 Opp. Fum. Lost −0.024∗∗∗ −0.023∗∗∗
(0.005) (0.004)

2 Opp. Fum. Lost −0.055∗∗∗ −0.059∗∗∗
(0.009) (0.009)

3 Opp. Fum. Lost −0.130∗∗∗ −0.142∗∗∗
(0.021) (0.020)

Lag PassOE −0.001∗∗∗ −0.001∗∗∗
(0.00002) (0.00002)

QB Dropback 0.162∗∗∗ 0.162∗∗∗ 0.379∗∗∗ 0.400∗∗∗
(0.004) (0.004) (0.040) (0.036)

Observations 352,984 352,984 344,148 344,146 344,148 344,146
R2 0.005 0.009 0.014 0.027

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5 Results

5.1 �e Causal E�ect of Passing on Early Downs

Estimating the naive regressions (Table 1 columns 1 and 2) �rst, we �nd a positive relationship

between QB Dropbacks (i.e., called passes) and o�ensive e�ciency on early down plays. �al-

itatively, this is the e�ect we expect—passing has consistently outperformed rushing in this ef-

�ciency metric. However, when we estimate the 2SLS regressions with cumulative fumbles lost

and lagged pass over expected as instruments, we �nd a much larger e�ect. In particular, while

the “naive” e�ect was an increase of 0.16 EPA per called pass, 2SLS estimates a 0.38 EPA increase

in EPA (Table 1 column 3.2). We interpret this downward bias in the naive coe�cient as a func-

tion of biases that might cause be�er passing teams to pass less. For example, if teams with be�er

passing o�enses score earlier, they might move away from passing as they extend their lead.

Second, the results show the behavioral relevance of the instruments for passing. Cumula-

tive fumbles lost drive pass rate as we would expect them to. A fumble lost puts a coach into a

worse game state, which increases their probability of dropping back to pass—when coaches lose

a fumble, they pass more. On the other hand, an opponent losing a fumble (i.e., fumbles gained)

decreases the coach’s probability of dropping back—when coaches get lucky with fumbles, they

pass less. Moreover, the instruments tell a coherent story. �e e�ect size of fumbles lost and

gained is relatively symmetric (opponent fumbles have a slightly stronger e�ect) and the e�ects

increase as fumbles mount up (two fumbles lost makes us pass more than one, and three more

than two). For lagged pass over expected, we also �nd that our estimates re�ect the negative

serial correlation described in Emara et al. (2017).

Formally testing for instrumental relevance, we estimate a �rst stage Cragg-Donald statis-

tic of 299.45 from the non-�xed e�ects 2SLS regression, reducing concerns about issues related

to weak instruments. �is is signi�cant at least at the 5% level (bias of 5% relative to OLS, one
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endogenous variable, 13 instruments: 5% critical value of 21.1; Stock and Yogo, 2005, does not

present critical values for smaller levels).12 We also estimate single instrument variables models

and �nd similar �rst and second stage results (see Table B1 for results and Table B2 for �rst stage

results). Lag pass over expected tends to result in a slightly larger e�ect (0.41) as compared to

fumbles lost instruments (0.26). We interpret this di�erence in terms of weighting, with the fum-

bles lost instrument leading to higher weighting of individual treatment e�ects in games where

ball handling is di�cult. Further results and discussion are presented in Appendix B.

5.2 Estimating Usage Curves and Optimal Pass Rate on Early Downs

5.2.1 Naive Estimates

�emain e�ects on early downs (all �rst and second down plays) are presented in Table 2. While

the value of passing falls as the expectation of passing increases, rushing did not become more

valuable as it becomesmore surprising. �at rushing e�ciency falls as passes are expected betrays

the endogeneity present in this regression: this should tell us that less e�cient o�enses �nd

themselves needing to pass later in games, and are poor at rushing and passing, so both decline

for teams in such a game state. Placing these estimates into our simplemodel of optimal pass rates,

the naive estimates suggest an optimal pass rate of approximately 86.7% on early downs. �is is

considerably higher than the average pass rate on early downs, 51.7%. However, we cannot take

this number at face value: the high optimal pass rate is in part due to the endogenous reduction

in rushing e�ciency associated with greater expected passing rate.

5.2.2 Two-Stage Least Squares Estimates

Focusing on the pooled 2SLS regression in Table 2 column 3, estimates di�er considerably from

the naive estimates. Usage curves bear out: we estimate rushing e�ciency increases by 0.16 EPA
12�e Cragg-Donald Statistic is estimated using ivregress in Stata.
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Table 2: Estimates of Usage Curves in Professional Football. First and second down plays outside
of the two minute warning from 2006-2020. Controls omi�ed from table.

EPA
OLS FE 2SLS FE 2SLS
(1) (2) (3) (4)

XPass (β̂) −0.010 0.032∗∗ 0.164 0.129
(0.014) (0.014) (0.783) (0.809)

Pass (γ̂) 0.244∗∗∗ 0.239∗∗∗ 1.346 1.058
(0.013) (0.013) (1.162) (1.126)

XPass × Pass (δ̂) −0.135∗∗∗ −0.137∗∗∗ −1.278 −0.905
(0.024) (0.024) (1.803) (1.810)

Constant (α̂) −0.077∗∗∗ −0.394
(0.007) (0.455)

Optimal Pass Rate (p̂∗) 86.7% 98.9% 59.1% 65.6%

Fixed E�ects No Yes No Yes
Observations 352,032 352,032 343,201 343,201
R2 0.005 0.009

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

when a pass is sure versus when a rush is sure. Likewise, passing e�ciency decreases by 1.28 EPA

when a pass is sure versus when a rush is sure. Figure C1 visualizes the estimated usage curves

from this speci�cation. Usage curves are much steeper in the 2SLS estimates as compared to OLS.

When the probability of passing approaches zero, 2SLS estimates a premium of 1.35 EPA/play.

However, when passing probability is close to the average pass rate (51.7%), the passing premium

is estimated at around 0.77 EPA. Finally, in situations where the probability of passing approaches

one, the premium estimated falls to 0.23 EPA. In Appendix C.1 we discuss how LATE-weighting

could impact these estimates.
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One limitation to these results is that coe�cient estimates on the endogenous variables tend

to be noisy. �is is due to three facts. First, unique to our set-up is that the endogenous variables

are related, and thus have an unusually high degree of multicollinearity. Second, instrumental

variables strategies by their nature chisel away at variation which is not quasi-random, which

increases multicollinearity as a side e�ect (Rhoads, 1991). �ird, we are using robust standard er-

rors clustered at the team-game level. �ese factors can all lead to a loss of precision in estimating

e�ects. Indeed, none of our coe�cients of interest are signi�cant in this speci�cation.

Our ultimate goal is not the usage curves themselves, however, but the optimal pass rate. To

be�er understand the optimal pass rate implied by our estimates and its variation, we compare the

observed pass rate to the IV-implied optimal pass rate using a cluster-robust jackknife (Hansen,

2024, 2025). For this process, we use our preferred regression (column 3 of Table 2). We �nd that

the optimal pass rate is statistically di�erent from the observed empirical pass rate (signi�cant at

any conventional level). �e results of this process are plo�ed in Figure 3. �e upper panel depicts

the e�ciency curves estimated in each iteration of the jackknife. �ese result in a tight bound

around the e�ciency curve and a tight clustering of optimal pass rates, plo�ed in the panel below.

�ese results suggest that o�enses should pass about 59.1% of early down plays as opposed to the

actual pass rate of 51.7% on early downs, implying the average coach overestimates the element

of surprise (at least on early downs) and rushes too o�en as a result. Despite this, according to the

2SLS model, the bene�ts to moving to the optimal pass rate are not massive, about 0.007 EPA/play.

�is translates to an extra point every 143 plays.

5.3 Addressing �reats to Validity

5.3.1 Relevance with Multiple Endogenous Variables

While we demonstrated relevance in single equation models, we also provide evidence here

around the relevance of the instruments when we estimate regressions with multiple endogenous
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Figure 3: Jackknife IV Estimates of �e E�ciency Curve (above) and Optimal Pass Rate (below).
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variables. Results from the �rst stage of the Pooled 2SLS estimation are presented in Table 3. �e

coe�cients tell a coherent and intuitive story: losing fumbles increases pass rate, while gaining

fumbles decreases pass rate. Likewise, lagged pass over expected retains its negative serial correla-

tion. Finally, there is some slight a�enuation in the negative correlation in passing when fumbles

are lost by either team. �is may be because this takes teams out of neutral game states into pass

heavy or rush heavy game plans. In each �rst strage regression instruments are strongly associ-

ated with the relevant endogenous variable (as can be seen in Section 5.1). We �nd similar results

for the �xed e�ects speci�cation (see Table C1). Despite these clear indications of relevance, we

obtain a Cragg-Donald Statistic of 3.38. �is is comparable to a 5% critical value of 4.41 (for 30%

bias relative to OLS, three endogenous regressors, and 13 instruments, see Stock and Yogo, 2005).

We cannot reject the null. �is is a surprising result until considering that Cragg-Donald statistic

tests for near under-identi�cation (Stock and Yogo, 2005). While such near under-identi�cation

is almost always due to relevance, here it seems to be due to the high degree of multicollinearity.

5.3.2 Multicollinearity and Optimal Pass Rate

As discussed above, we �nd high degrees of multicollinearity in our variables of interest. While

we have a su�ciently large sample to handle this issue when estimating OLS, IV estimates have

higher variance in�ation factors and are a�ected (see Table D1). As is the case withmulticollinear-

ity in simultaneous equations, this leads to noisier individual coe�cients (e.g., �uvial systems, as

in Rhoads, 1991). Such multicollinearity a�ects inference on individual coe�cients; however, the

optimal pass rate, p̂∗, depends on a nonlinear combination of these correlated coe�cients which,

when put together, are statistically di�erent from the observed pass rate. In fact, the p̂∗IV is es-

timated quite precisely, with the underlying correlation structure of the coe�cients stabilizing

what otherwise might appear as noisy estimates. Intuitively, changes in the numerator are o�set

by (correlated) changes in the denominator, and vice versa (see Table D2).
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Table 3: First Stage Results from 2SLS Usage Curves Estimation. First and second down plays
outside of the two minute warning from 2006-2020. Controls omi�ed from table.

Dependent variable:

Pass XPass XPass x Pass
(1) (2) (3)

1 Pos. Fum. Lost 0.021∗∗∗ 0.018∗∗∗ 0.021∗∗∗
(0.005) (0.003) (0.004)

2 Pos. Fum. Lost 0.044∗∗∗ 0.039∗∗∗ 0.045∗∗∗
(0.009) (0.007) (0.008)

3+ Pos. Fum. Lost 0.098∗∗∗ 0.079∗∗∗ 0.097∗∗∗
(0.019) (0.015) (0.019)

1 Opp. Fum. Lost −0.024∗∗∗ −0.023∗∗∗ −0.025∗∗∗
(0.005) (0.003) (0.004)

2 Opp. Fum. Lost −0.055∗∗∗ −0.047∗∗∗ −0.053∗∗∗
(0.009) (0.006) (0.008)

3+ Opp. Fum. Lost −0.129∗∗∗ −0.101∗∗∗ −0.113∗∗∗
(0.021) (0.014) (0.016)

1 Pos. Fum. Lost x Lag PassOE 0.0003∗∗∗ 0.0001∗∗∗ 0.0002∗∗∗
(0.0001) (0.00002) (0.00004)

2 Pos. Fum. Lost x Lag PassOE 0.001∗∗∗ 0.0001∗∗∗ 0.0004∗∗∗
(0.0001) (0.0001) (0.0001)

3 Pos. Fum. Lost x Lag PassOE 0.0003 0.0001 0.0002
(0.0003) (0.0001) (0.0002)

1 Opp. Fum. Lost x Lag PassOE 0.0002∗∗∗ 0.0001∗∗∗ 0.0002∗∗∗
(0.0001) (0.00002) (0.00004)

2 Opp. Fum. Lost x Lag PassOE 0.001∗∗∗ 0.0001∗∗ 0.0003∗∗∗
(0.0001) (0.00005) (0.0001)

3 Opp. Fum. Lost x Lag PassOE 0.001∗ −0.00001 0.0003
(0.0003) (0.0001) (0.0002)

Lag PassOE −0.001∗∗∗ −0.0005∗∗∗ −0.001∗∗∗
(0.00003) (0.00001) (0.00002)

Observations 344,148 343,203 343,203
R2 0.014 0.038 0.029

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5.3.3 Instrumental Validity and Aggression on Passing Plays

Othermargins of aggression in decision-making by coachesmay threaten the exclusion restriction

if they are correlated with e�ciency. While it is never possible to rule out every causal pathway

by which an instrument might violate the exclusion restriction, it is useful to provide suggestive

evidence about likely pathways. One pertinent pathway is passing aggression, by which wemean

the aggressiveness of the design of passing plays, holding the decision to pass constant. If fumbles

lost increases passing aggression, we might worry that our strategy underestimates the optimal

passing rate holding this factor constant. We investigate this in Appendix E and �nd that our

instruments do not systematically impact passing aggression.

6 Conclusion

�roughout professional and college football, passing has become the predominant o�ensive

strategy. While passing rates have increased, so too has its e�ciency. �is naturally leads to

questions about the optimal passing rate, and whether or not enough (or too many) passes are be-

ing called. Empirically, this is a di�cult question to answer, because defenses can and do change

their strategies. In this paper, we argue for an instrumental-variables approach to tackle the

endogeneity of o�ensive and defensive decision-making. We use fumbles lost (conditional on cu-

mulative fumbles) as the basis for a series of instruments, which we argue meet the conditions

for interpreting the results as local average treatment-e�ects. We use lagged pass over expected

as a second instrument, and construct a full set of instruments using their interactions.

We �nd NFL playcallers do not pass enough. Our results indicate, all else equal, the opti-

mal passing rate on early downs is 59.1%. �is is considerably lower than the 86.7% rate from a

naive regression, illustrating the signi�cant bias created by ignoring the endogeneity of decision-

making. However, it is higher than the league-average pass rate (51.7%), suggesting more passing
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would increase o�ensive e�ciency, even accounting for defensive responses. However, coaches

do �nd themselves close to peak EPA/play, less than one hundredth of a point per play. �is op-

timum rate is based on assumptions, including the linearity of usage curves and that defensive

responses to increased passing in the future would be similar to defensive responses to higher

passing probabilities in the past. Regardless, our �ndings suggest that coaches have moved to-

ward optimal pass rates over the period in our sample. Further work is needed to se�le this issue,

including on the myriad contextual dimensions of playcalling, such as heterogeneity in game sce-

narios and team composition, as well as possible behavioral reasons for deviating from optimality

(e.g. Romer, 2006; Slade and Tolhurst, 2019).
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A Optimization Problem

A.1 Interior Solutions: General Case

We outline the necessary and su�cient conditions for an interior solution to optimal pass rate.

�e following conditions will guarantee an interior solution:

1. E(p) is continuous and di�erentiable

2. ∂E(p)
∂p |p=0 > 0

3. ∂E(p)
∂p |p=1 < 0

4. E(p) is concave down in p, i.e., ∂
2E(p)
∂p2

< 0

If these hold, FOC (2) will deliver an optimal pass rate.

A.2 Interior Solutions: Linear Case

We outline the necessary and su�cient conditions for an interior solution for the optimal pass

rate in the linear case. First, FOC (2) must hold. Second, note that E(p) can be re-wri�en as a

parabola:

E(p) = p× PE(p) + (1− p)× RE(p) = p× (c+ d× p) + (1− p)× (a+ b× p)

= p× c+ d× p2 + a+ b× p− a× p− b× p2 = (d− b)× p2 + (c− a)× p+ a

�erefore, in the case that d − b < 0, E(p), points downwards, i.e., is concave down. �ird, as

shown in Section 2.3, c+ 2d > a+ b and a− b > c.
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To obtain the optimal pass rate, we simply plug in the linear usage curves to FOC (2):

(1− p∗)× ∂RE(p∗)

∂p
−RE(p∗) + p ∗ ×∂PE(p∗)

∂p
+ PE(p∗) = 0

(1− p∗)× b− (a+ b× p∗) + p∗ × d+ (c+ d× p∗) =0

2p∗ × (d− b) + c+ b− a = 0

p∗ =
1

2

(
a− c
d− b

− b

d− b

)
.

A.3 Visualizing Corner Solutions

Figure A1 presents a case where one should always pass. As can be seen in the �gure the loss

of e�ciency in passing and the gains in rushing as passing becomes expected are not enough to

outweigh the premium from passing.
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p ∗ = 1α

α + γ

RE(p) = α + β × p

PE(p) = (α + γ) + (β + δ) × p

E(p) = p × PE(p) + (1 − p) × RE(p)
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Figure A1: Our model of playcalling e�ciency. Plo�ed are the usage curves for passing (PE) and
rushing (RE). Additionally, we plot the e�ciency curve, which is the play call weighted sum of
these usage curves. For this example, we choose parameters so that the playcaller should always
pass (β + γ + 2δ ≥ 0).
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p ∗ = 0

α

α + γ

RE(p) = α + β × p

PE(p) = (α + γ) + (β + δ) × p

E(p) = p × PE(p) + (1 − p) × RE(p)
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Figure A2: Our model of playcalling e�ciency. Plo�ed are the usage curves for passing (PE) and
rushing (RE). Additionally, we plot the e�ciency curve, which is the play call weighted sum of
these usage curves. For this example, we choose parameters so that the playcaller should always
rush (γ + β ≤ 0).
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B �e LATE of Passing on Early Downs: Single Instruments

Table B1 presents the treatment e�ects from estimating single instrument models. �ese models

tend to reveal similar results as utilizing both instruments, with and without �xed e�ects. In all

speci�cations passing leads to greater per play e�ciency, with the premium ranging from 0.26

EPA to as much as 0.41 EPA.

Table B2 presents the �rst stage results for these models. �e coe�cients on the instruments

are all signi�cant at the 0.1% level and point in the theoretically expected direction: Team fum-

bles lost increase passing rate, opposing fumbles lost decrease passing rate, and passing exhibits

negative serial correlation.

Why does lagged pass over expected tend to result in higher impacts than fumbles lost? We

hypothesize this is the case because we are estimating LATEs. Speci�cally, if there are more

fumbles in outdoor games with poor ball handling conditions (due to wind, rain, or temperature),

this would suggest higher weighting of these situations in the LATE. However, as these conditions

would also reduce passing e�ciency relative to rushing e�ciency, this wouldmean that this LATE

might lead to a lower estimate when compared to lag pass over expectation. As negative serial

correlation has a behavioral root (i.e., coaches a�empting to mimic randomness), it should apply

just as well to fair weather and games played inside domes.
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Table B1: Causal E�ects of Called QB Dropbacks on E�ciency. Single instrument estimates. First
and second down plays from 2006-2020. Controls omi�ed from table.

EPA
Fumbles Lost Lagged Pass OE
(1) (2) (3) (4)

QB Dropback Fit 0.262∗ 0.308∗∗ 0.386∗∗∗ 0.405∗∗∗
(0.143) (0.133) (0.041) (0.037)

Fixed E�ects No Yes No Yes
Observations 352,984 352,984 344,146 344,146

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B2: Causal E�ects of Called QB Dropbacks on E�ciency. First stage. First and second down
plays from 2006-2020. Controls omi�ed from table.

Pass
Fumbles Lost Lagged Pass OE

(1) (2) (3) (4)

1 Pos. Fum. Lost 0.021∗∗∗ 0.023∗∗∗
(0.005) (0.004)

2 Pos. Fum. Lost 0.045∗∗∗ 0.046∗∗∗
(0.009) (0.009)

3 Pos. Fum. Lost 0.098∗∗∗ 0.099∗∗∗
(0.018) (0.018)

1 Opp. Fum. Lost −0.024∗∗∗ −0.024∗∗∗
(0.004) (0.004)

2 Opp. Fum. Lost −0.055∗∗∗ −0.059∗∗∗
(0.009) (0.009)

3 Opp. Fum. Lost −0.129∗∗∗ −0.140∗∗∗
(0.020) (0.020)

Lag PassOE −0.001∗∗∗ −0.001∗∗∗
(0.00002) (0.00002)

Observations 352,986 352,986 344,148 344,148
R2 0.004 0.015 0.010 0.023

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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C Estimating Usage Curves using Instrumental Variables

C.1 LATEs and Optimal Pass Rates

Instrumental variables estimates are LATEs, meaning that the individual e�ects are weighted

by response to the instruments. �erefore, in understanding While we expected lagged passing

over expected to a�ect response relatively symmetrically across teams and games, we expect that

our fumbles lost instrument tends to weight outdoor games with poor ball handling relatively

more as there are more fumbles in these games—situations that correspond with reduced passing

e�ciency relative to rushing. To the degree that fumbles lost drives weighting, we would expect

that our optimal passing rate is is local to more adverse conditions than are faced on average

in the NFL. However, we are not particularly worried about this possibility. First, if anything,

this would imply a higher optimal pass rate than we report meaning our results are conservative.

Second, as two stage least squares will balance weighting across the two instruments, this should

also balance out the weighting of the LATEs. �is interpretation is consistent with our results on

the causal e�ect of early down passing (see Appendix B).

C.2 Visualizing Usage Curves Using OLS and IV Results

�e comparison between OLS and IV results are illustrated as usage curves and optimal pass rates

in Figure C1. �e usage curves for IV are much steeper than those for OLS.

C.3 Relevance with Multiple Endogenous Variables: Fixed E�ects

Table C1 presents evidence of instrumental relevance from the �xed e�ects speci�cations. Once

again, these results tell a coherent story: fumbles lost increase the probability of passing, the

decision to pass, and the interaction of these two variables. Likewise, fumbles gained reduce

these three outcomes. Lagged pass over expected exhibits negative serial correlation, though this
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Figure C1: OLS and IV Estimates of Optimal Pass rates with Linear Usage Curves

is a�enuated when there have been many lost fumbles.
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Table C1: First Stage Results from FE 2SLS Usage Curves Estimation. First and second down plays
outside of the two minute warning from 2006-2020. Controls omi�ed from table.

Dependent variable:

Pass XPass XPass x Pass
(1) (2) (3)

1 Pos. Fum. Lost 0.023∗∗∗ 0.020∗∗∗ 0.024∗∗∗
(0.004) (0.003) (0.004)

2 Pos. Fum. Lost 0.046∗∗∗ 0.040∗∗∗ 0.046∗∗∗
(0.009) (0.006) (0.008)

3+ Pos. Fum. Lost 0.099∗∗∗ 0.081∗∗∗ 0.097∗∗∗
(0.019) (0.014) (0.018)

1 Opp. Fum. Lost −0.023∗∗∗ −0.023∗∗∗ −0.024∗∗∗
(0.004) (0.003) (0.004)

2 Opp. Fum. Lost −0.059∗∗∗ −0.049∗∗∗ −0.057∗∗∗
(0.009) (0.006) (0.008)

3+ Opp. Fum. Lost −0.141∗∗∗ −0.099∗∗∗ −0.119∗∗∗
(0.020) (0.014) (0.016)

1 Pos. Fum. Lost × Lag Pass OE 0.0003∗∗∗ 0.0001∗∗∗ 0.0002∗∗∗
(0.0001) (0.00002) (0.00004)

2 Pos. Fum. Lost × Lag Pass OE 0.001∗∗∗ 0.0001∗∗∗ 0.0004∗∗∗
(0.0001) (0.00005) (0.0001)

3+ Pos. Fum. Lost × Lag Pass OE 0.0003 0.0001 0.0002
(0.0003) (0.0001) (0.0002)

1 Opp. Fum. Lost × Lag Pass OE 0.0002∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗
(0.0001) (0.00002) (0.00004)

2 Opp. Fum. Lost × Lag Pass OE 0.0005∗∗∗ 0.0001∗∗ 0.0003∗∗∗
(0.0001) (0.00005) (0.0001)

3+ Opp. Fum. Lost × Lag Pass OE 0.001∗ −0.00003 0.0003
(0.0003) (0.0001) (0.0002)

Lag Pass OE −0.001∗∗∗ −0.0005∗∗∗ −0.001∗∗∗
(0.00003) (0.00001) (0.00002)

Observations 344,148 343,203 343,203
R2 0.028 0.060 0.044

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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D Multicollinearity

D.1 Multicollinearity and IV Estimates

Table D1 presents variance in�ation factors in the OLS and 2SLS regressions. Variance in�ation

factors tend to be high among the three coe�cients we estimate in our usage curve. �is is true

in the OLS estimates, where the VIF for β̂ and δ̂ are above 10. However, they multiply in the 2SLS

regression: all the VIFs are above 10 and δ̂ = 72.1, considerably higher than is recommended. �is

is consistent with other cases where simultaneous equations are used to model systems with high

degrees of correlation (e.g., �uvial systems as described in Rhoads, 1991). �erefore, we should

expect some variance around the individual coe�cients, and indeed, the coe�cients we �nd for

IV regression are quite noisy.

We are limited in our ability to manage multicollinearity to obtain precise estimates of the co-

e�cients. We are already using a large sample, and indeed it is large enough that multicollinear-

ity does not ma�er much to the variance of OLS estimates, despite high variance in�ation factors

there. However, we will need more years of data before we have su�cient sample size in the 2SLS

regressions. Likewise, techniques like principal components analysis (that create orthogonal in-

dices) are not appropriate for this case.

Table D1: Variance In�ation Factors for OLS and IV Regressions

Coe�cient OLS IV

β̂ (Pass) 11.2 36.2
γ̂ (XPass) 2.6 18.5

δ̂ (Pass × XPass) 15.4 72.1
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D.2 Multicollinearity and Optimal Pass Rates

While we cannot obtain precise estimates of the coe�cients, we are able to obtain precise esti-

mates of the optimal pass rate. One reason for this is the correlations between regression coef-

�cients. Table D2 presents the correlations from the Jackknife regressions, i.e., how coe�cients

vary together as we drop clusters. �e correlation in coe�cients is quite high, and explains the

increase in precision in our estimate. Recall that

p̂∗ = −1

2

(
γ̂ + β̂

δ̂

)
. (1)

Speci�cally, γ̂ and β̂ which make up the numerator are positively correlated with each other.

However, they are both negatively correlated with δ̂ at higher rates. As δ < 0, this translates to

an increase in magnitude in both the numerator and denominator of p̂∗.

�e coe�cients increase to some degree from OLS to IV. One concern is that if this in�ation

is due to high variance, given the correlation structure of the coe�cients, this might reduce the

estimate of p∗. If so, we might interpret p̂∗ from the IV estimates as a lower bound of p∗.

Table D2: Correlations Between Jackknife 2SLS Coe�cients

β̂ (Pass) γ̂ (XPass) δ̂ (Pass × XPass)
β̂ (Pass) 1.00 0.89 -0.99
γ̂ (XPass) 1.00 -0.93
δ̂ (Pass × XPass) 1.00

D.3 Limited Information Maximum Likelihood

One way to address this might be to use limited information maximum likelihood (LIML) (Stock

and Yogo, 2005). �is approach reintroduces some of the endogenous variation used by OLS, and

is typically used as a solution to reduce the bias of weak instruments, when this occurs. It is
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plausible that it could be useful for our case, however, it ends up yielding very similar results.

LIML is controlled by a parameter κ, found using a known procedure. When κ = 1, LIML will

yield the same results as 2SLS. However, whenwe run this (using the ivregress command in Stata),

κ̂ ≈ 1, meaning that these estimates would be redundant.
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E Instrumental Validity: Passing Aggression

Table E1 presents results of regressing passing strategy and e�ciency on our instruments, con-

trolling for fumbles. We measure passing aggression via the share of deep passes thrown on drop-

backs and passing EPA. However, we �nd that on early down pass a�empts, cumulative fumbles

lost and lagged passing over expected do not increase the share of deep passes, nor do they sys-

tematically increase the EPA per dropback on called passes. Among the instruments, we �nd two

coe�cients signi�cant at the 5% level, about what one would expect due to random noise. �is

suggests that the exclusion restriction is not violated by coaches adjusting passing aggression in

addition to passing.

43



Table E1: E�ect of Cumulative Fumbles Lost on Passing Aggression. First and second down plays
outside of the two minute warning from 2006-2020. Controls omi�ed from table.

Dependent variable:

Deep Pass Dropback EPA
(1) (2) (3) (4)

1 Pos. Fum. Lost −0.002 −0.002 0.001 0.003
(0.003) (0.003) (0.012) (0.011)

2 Pos. Fum. Lost 0.001 −0.001 0.002 0.006
(0.006) (0.006) (0.022) (0.022)

3+ Pos. Fum. Lost 0.001 −0.003 0.047 0.072
(0.013) (0.013) (0.046) (0.046)

1 Opp. Fum. Lost −0.004 −0.005 0.007 0.011
(0.003) (0.003) (0.011) (0.011)

2 Opp. Fum. Lost −0.003 −0.003 0.002 0.011
(0.007) (0.007) (0.023) (0.023)

3+ Opp. Fum. Lost −0.008 −0.003 0.024 0.021
(0.016) (0.016) (0.056) (0.057)

Lag Pass OE −0.00002 −0.00001 −0.0002∗∗ −0.0003∗∗∗
(0.00002) (0.00002) (0.0001) (0.0001)

Constant 0.181∗∗∗ 0.097∗∗∗
(0.002) (0.005)

Fixed E�ects No Yes No Yes
Observations 161,971 161,971 178,210 178,210
R2 0.0002 0.007 0.0003 0.007

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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