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1 Introduction

�e passing premium puzzle, introduced in Alamar (2006) is as follows: despite higher returns

to passing plays,1 that an approximately equal number of passing and running plays are run by

National Football League (NFL) teams. Over the years, many approaches have been proposed to

rationalize the apparent di�erence in optimal pass rates and the observed rate of passing. �ese

explanations include decisions-maker risk aversion and the role of defensive adjustments in de-

termining pass rate (Rockerbie, 2008; Jordan et al., 2009; McGarrity and Linnen, 2010). �e avail-

ability of play-by-play data to the public has increased dramatically since the majority of work

was done. Open source packages in R as well as other programming languages now allow anyone

to pull data directly from league sources. �is increased access has allowed for the development

of a robust public analytics discussion.2

Since 2006, passing has increased dramatically in theNFL, around 4.5 percentage points (�gure

1). Absent any increases in passing e�ciency (relative to rushing), this might suggest that the

passing premium puzzle has been solved. �at is, that coaches have become wise to the work

of analysts and have responded by passing more. However, given that the e�ciency of passing

has also improved as compared to rushing, a clear alternative explanation exists: coaches have

selected into passing as the returns have increased. Given this large increase in both pass rate

and passing e�ciency, does the passing premium puzzle persist?

To answer this question, we �rst need to return to a centrally important question in football

analytics: what is the optimal pass rate? Following work which posits defensive adjustments as

a primary reason for persistent di�erences, we use a simple model of per play e�ciency which

allows the e�ciency of passing and running to vary with their respective usage. Estimating the

“usage e�ects” on passing and rushing e�ciency, we can determine the optimal pass rate. How-
1Measured in yards or more advanced statistics like Expected Points Added.
2Additionally, more data is available about what is happening on any given play, though o�en not to the public.

�is includes personnel, alignments, passing and coverage concepts, and even more recently, player tracking data.
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Figure 1: Evolution of NFL Pass rate and per play e�ciency over time, 2006-2020

ever, just as selection into passing over the past ��een years may be driven by improvements

in passing o�ense, estimating usage e�ects means one must contend with how teams select into

passing. For example, coaches with strong passing o�ense may pass more o�en than their coun-

terparts, which would bias the estimation of usage e�ects.

To remove selection bias in estimating the parameters of this model, we introduce a new in-

strumental variable for passing and expected pass rate. In particular, we argue that conditional on

the number of fumbles by a team, fumbles lost is a important and essentially random determinant

of game state, measured through win probability or net score. �is change in game state forces

teams to become more aggressive than they would otherwise would be, passing more o�en in

order to score the points necessary to win the game. Importantly, both the fumbling team and

the opposing team realize this necessity, meaning that our instrument forces changes in passing

expectations for the defense as well. In this way, our approach mimics the defensive adjustments

of a long term increase in passing probability.

We draw on the play-by-play data from the NFL from 2006 to 2020 to investigate these ques-
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tions, as well as predictive models of expected passing and expected points have been developed

in the public sphere (Yurko et al., 2019; Baldwin, 2021). Using several instruments generated from

fumbles lost, we estimate (1) the casual e�ect of passing, (2) the causal e�ect of expected pass rate,

and (3) the interaction of the two variables on per play e�ciency using two-stage least squares,

conditional on the number of total fumbles (lost or otherwise). We argue that our instruments

and speci�cation ful�ll the conditions outlined in Angrist and Krueger (1999) and Blandhol et al.

(2022). �at is, they can be interpreted as local average treatment e�ects (LATE).

We �nd that coaches actually deviate substantially from the optimal usage of passing when

usage curves are linear. Using the 2SLS estimates on early downs, when the opponent expects a

sure run, passing increasing EPA by 0.48 points/play relative to a rush. However, when passing

is expected, EPA actually falls 0.18 points per play. Embedding our instrumental variables results

with the model of usage curves returns and optimal pass rate of 71% compared to an actual pass

rate of 52%, a considerable deviation. However, this deviation is smaller than would be recovered

by naively estimating OLS. We a�ribute this to the fact that the 2SLS do not su�er from the same

issues of selection into passing as the OLS estimation. �is result suggests that coaches may

overestimate the element of surprise in football strategy, opting to run too o�en on early downs.

2 A Simple Model of Play Calling E�ciency

�e intuition of usage curves is straightforward, the relative e�ciency of a given play is a function

of how o�en it is used. More speci�cally, the greater frequency with which a play is used, the

more opponents will prepare for that play and the lower the e�ciency of this play. A stylized

model of playcalling can formalize this intuition about usage curves. In this model, a play caller

can call a run or a pass. At a macro level, the playcaller is looking to maximize e�ciency, which is

the decision-weighted sum of passing e�ciency and rushing e�ciency. While passing e�ciency

tends to be higher for NFL teams, we will allow the e�ciency of both passing and rushing to
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vary with the decision weights. If usage curves are negatively sloped, e.g., passing e�ciency falls

when pass rate increases, this might suggest an optimal pass rate between zero and one. 3

2.1 Optimization Problem

I set up the optimization problem as so:

max
pi

E = p× PE(p) + (1 − p) × RE(p) (1)

where E is overall e�ciency, RE is rushing e�ciency and PE is passing e�ciency, p is the pass

rate, and 1− p is the rush rate. We allow passing e�ciency and rushing e�ciency to rely on rush

rate, and call these e�ciencies usage curves.

2.2 General Case

In the general case, the �rst order condition will be

p× ∂REi(p)
∂p

− RE(p) + p× ∂PE(p)

∂p
+ PE(p) = 0 (2)

Without further assumptions we won’t be able to �nd a closed form, explicit solution for p∗.

Moreover to do something like the implicit function theorem, we would need to introduce some

parameters that should in�uence the optimal rate of p. Eshewing this, we decide to work within

a linear case.
3I recognize that this simple and abstract model may be lacking in realism: various aspects of pre-play call situation

that impact the optimality of the play called. Largely, I present this model as a model of playcalling all else held equal.
�erefore, we can return to this realism in our empirical work. For example, this model might apply to a speci�c
situations, e.g., 1st & 10, or to a number of similar situations controlling for pre-play observables (speci�cally, down,
distance, and �eld position).
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2.3 Linear Case

For simplicity of exposition (and later estimation), we assume a�ne usage curves, i.e., ∂PE(p)
∂p is

constant. Wri�en another way: RE = a + bp, PE = c + dp where ∂PE(p)
∂p = d and ∂RE(p)

∂p = b.

Solving this optimization problem we get to an optimal rush rate,4

p∗ =
1

2

(
a− c

d− b
− b

d− b

)
(3)

How do we interpret this optimal pass rate? We can break it out into two e�ects:

1. E�ciency E�ect: 1
2

(
a−c
d−b

)
. �e ratio of the e�ciency of the run game less e�ciency of the

pass game to the relative decrease in the passing e�ciency premium yielded from always

passing. �is e�ect tells us that the be�er the pass game andworse the run game are overall,

the more we should pass.

2. Responsiveness E�ect: −1
2

(
b

d−b

)
. Ratio of the absolute increase in rushing e�ciency from

always passing to the relative decrease in the passing e�ciency premium yielded from

always passing. �e less the rush game responds to rushing, or the more the pass game

responds to passing, the less we should pass.

Finally, are there ever times that we should only pass or only run? Yes. We can characterize

corner solutions based on this optimal rush rate.

1. If d+ c ≤ c+ 2d, then p∗ = 1. I.e., it will be maximize the e�ciency of the o�ense to only

pass.
4Intermediate steps:

(1− p)× ∂RE(p)

∂p
−RE + p× ∂PE(p)

∂p
+ PE =0

(1− p)b− (a+ bp) + pd+ (c+ dp) =0

2p(d− b) + c+ b− a =0
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2. If a ≤ a− b, then p∗ = 0. I.e., it will be maximize the e�ciency of the o�ense to only run.

Given credible estimates that allow us to recover â, b̂, ĉ, and d̂, we can gain a good idea of what

the optimal rush rate would be, holding situation constant.

3 Data

3.1 Play-by-Play Data

We use play-by-play data from games in the National Football League over the years 2006 to 2020.

�is data includes comprehensive contextual and outcome variables that document the state of

the game before the play and describe what happened on each play. Contextual variables include

things like down, distance to earn a �rst down, time remaining in the half, time remaining in

the game, yard line, the current score, as well as information about the where the game is being

played and one which date. Additionally, outcomes of plays include whether a play was called

as a pass or a run, the yardage gained, if the pass was intercepted, if the ball was fumbled and

who recovered, whether a sack was recorded, or if the team scored. �is data was obtained using

the n�fastR package in R (Carl and Baldwin, 2021). Included in the data are outputs from several

public analytics models, which we will described in the next section.

3.2 Public Analytics Models

�ese include expected points and expected pass probability. We will describe these models

brie�y, but urge readers to consult more comprehensive sources for deeper understanding if they

are not familiar. In particular, for details on how to each of these variables were computed, see

Baldwin (2021) which draws on the framework of Yurko et al. (2019).

Baldwin (2021) uses XGBoost to predict the relevant outcomes for each model. �e expected

points model predicts the probabilities of a set of scoring plays (touchdown, �eld goal, opponent
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touchdown, etc.) using variables related to time in game, yard line, home, �eld type, down and

distance, era, and timeouts remaining. Summing up the expected value of the next score using the

estimated probabilities leaves us with expected points. Finally, taking the di�erence in expected

points before and a�er a play yields that play’s Expected Points Added (EPA). �is will serve as

our main measure of e�ciency. Second, to estimate usage curves, we will need an estimate of the

probability of a pass. Similarly, the Expected Pass (XPass) Model estimates this using variables

related to yard line, home, �eld type, time in game, down and distance, score di�erential, times,

win probability, and era. �ese values are provided for each play in the play-by-play dataset.

4 Empirical Strategy

4.1 Identifying Pass-Run Usage Curves

4.1.1 Ideal Variation: A Play-Calling Experiment

In preparing for future games, coaches watch and chart game �lm from previous games to un-

derstand opponent “tendencies.” Anecdotally, this is o�en the last three games an opponent has

played or the last time a team played that team, coach, or key player. �en, these tendencies

are used in se�ing future game plans. If teams run more, for example, the game plans would be

adjusted to be “stout against the run.” As an example, defensive alignments might tend to put put

more men in the box.5

Suppose we could run an experiment, where teams were randomly chosen to pass more (for

example, by a certain amount). We might run this experiment for the �rst four weeks of the sea-

son, to set tendencies. If teams passes more o�en, based on the game planning process commonly

instituted in the NFL, the opponent will tend to devote more defenders to coverage responsibil-
5From Football Outsiders Glossary, the box is “the defensive area between the o�ensive tackles extending approx-

imately seven yards deep in the defensive back�eld. �e defense will put more players “in the box” the more intent
they are on stopping a running play.” See h�ps://www.footballoutsiders.com/info/glossary general
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ities. Given this type of exogenous variation, we could estimate the causal impact of usage on

e�ciency by regressing e�ciency in that fourth game on pass rate from these �rst three games.

Aggregating the linear model we speci�ed above, we construct an e�ciency regression,6

Eig = α+ βp̄i,−g + γPassi + δPassip̄i,−g (4)

where i indexes team, g indexes game, and r̄i,−g is the average rush rate leaving out game g and

future games. �is research design would estimate the e�ect of passing, and the e�ect of passing

rate on rushing and passing e�ciency.

However, in the real world any such experiments in play calling are few and far between.

Moreover, if and when they do take place, they would be di�cult to detect. Moreover, in the

absence of these experiments, there is real and serious selection bias to contend with: teams who

are be�er at passing will pass more. Even when there are changes in o�ensive philosophy, these

might be driven by improvements in passing o�ense. �erefore, the endogenous nature of passing

will likely bias observational estimates.

4.1.2 �asi-Experimental Variation: Fumbles Lost as an Instrument

While coaches likely would respond the experiment described above, its just one possible cause

for which we could estimate an e�ect. Just as coaches might respond to a persistent change in

run-pass rate, there are many other causes for coaches to adjust their defensive decision-making

to counter the pass or the run. Coaches do not just rigidly choose a gameplan and then execute it

(in fact, this may be the hallmark of a bad coach). Instead, they make adjustments on the �y as the

game goes on, o�en implemented in response to the game state, which might encompass the net

score and the probability a given team will win the football game. It is well documented that an
6Note α = a, β = b, γ = c− a, and δ = d− b. �is means the e�ciency e�ect could be restated as −γ/2δ and

the the responsiveness e�ect as −β/2δ and p∗ = − 1
2

(
γ+β
δ

)
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increase in a teams win probability decreases propensity to pass and increases their propensity

to run. However, using the natural variation in game state within a game will face a similar issue

with reverse causality. Teams who are behind likely already have worse e�ciency on o�ense,

which is what caused them to be behind. To this end, I propose to use a set of instruments based

on cumulative fumbles lost to the opposing team (conditional on cumulative fumbles overall) to

remove the selection bias in expected pass rate and actual decision to pass. �is set of instruments

includes fumbles lost by the possessing team, fumbles lost by the opposing team to the possessing

team, and their interaction with actual passing calls.

Fumbles – and who recovers them – have been identi�ed by football analysts as a random,

but crucial component of winning football games. For example, Massey-Peabody Analytics, who

prepare predictive team ratings based on historical data, down weight statistics related to recov-

ered fumbles in their team ratings: “recovered fumbles, which greatly in�uence the outcome of

games, […] are completely random.”7 �e randomness and importance of fumbles is noted else-

where. Bill Connelly identi�es fumbles and fumble recoveries as a one of the �ve main factors

in�uencing the outcome of college football games. More speci�cally, he identi�es it as a random

factor in winning football games. As he so adeptly puts, if you want to win football games, “you

want that damned, pointy ball to bounce in a favorable way.”8

�erefore, cumulative fumbles lost is an a�ractive candidate for an instrument for pass rate
7h�p://massey-peabody.com/methodology/ Full quote: “Our chief way of doing this is toweigh performance statis-

tics by their predictive ability. �at is, their ability to predict out-of-sample performance rather than describe in-sample
performance. �e canonical example is recovered fumbles, which greatly in�uence the outcome of games, yet are com-
pletely random. Because they are random they have no predictive power, and any stat heavily in�uenced by fumbles
recovered (or many other chance events) will carry less weight in our model than in models based on descriptive
analysis.”

8h�ps://www.footballstudyhall.com/2014/1/24/5337968/college-football-�ve-factors Full quote: “Over time, I’ve
come to realize that the sport comes down to �ve basic things, four of which you can mostly control. You want to be
e�cient when you’ve got the ball, because if you fall behind schedule and into passing downs, you’re far less likely
to make a good play. You want to eat up chunks of yardage with big plays, because big plays mean both points and
fewer opportunities to make mistakes. When you get the opportunity to score, you want to score. And when you give
the ball back to your opponent, you want to give them to have to go as far as possible. And you want that damned,
pointy ball to bounce in a favorable way. Again, you control four of the �ve.”
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and expected pass rate. In fact, the properties of cumulative past fumbles lost, relate closely to

three of the conditions needed for a valid instrument.9 First, if the number of past fumbles lost

are random (conditional on total cumulative fumbles by that team), this satis�es the indepen-

dence assumption, which states that the instrument is as good as randomly assigned. Second,

the importance of fumbles as driving swings in the game state and the importance of game state

in passing rate, suggest that fumbles lost will serve as a strong instrument. �at is, they will be

strongly correlated with the endogenous variable (Stock and Yogo, 2005). �is condition can of

course be checked in the data. �ird, since fumbles themselves make a poor predictor of future

performance, this helps in build a case for the exclusion restriction – that the instrument is related

to the outcome through the endogenous variable(s) – is satis�ed. In addition to these three condi-

tions, the last condition needed for instrumental variables to estimate the local average treatment

e�ect (LATE) is monotonicity. If there is heterogeneous response to the fumbles lost, we need

everyone to response weakly in the same direction. �at is, while not all coaches need to raise

their expected pass rate in response to past fumbles lost, but coaches cannot be pushed toward

rushing when fumbles have been lost in the past.

4.1.3 Fixed E�ects

For additional robustness, we also propose the use of panel �xed e�ects to control for o�ensive

quality. With panel data, �xed e�ects are widely used to control for time invariant observable

characteristics. In this case we want to control for team level propensity to pass (a function of

underlying talent) as a time invariant unobservable, so the decision of de�ning these �xed e�ects

is important. I propose to use team-year �xed e�ects to control for the propensity of a given team

with a quarterback to pass or to run.10

9See, for example �eorem 4.5.1 in (Angrist and Pischke, 2009).
10While one might want to utilize a great deal of �xed e�ects to control for various situations, many of these

will overlap. In particular, it seems reasonable that a quarterbacks’ talent, a coaches’ o�ensive system, an o�enses’
supporting cast would a�ect the probability of calling a run or calling a pass. However, many coach-quarterback
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4.2 Main Speci�cations

4.2.1 Instrumental Variables Speci�cation

Our approach to the instrumental variables speci�cation is to replicate an experimental set-up as

closely as possible. Our intuition is re�ected in a simple approach where we take games where

a fumble was lost as the “treatment” group and those games where the o�ense fumbled but did

not lose it as the “control” group. However, such a set-up would neglect the richness of the data.

�erefore, we construct indicator variables for each value of cumulative fumbles lost and each

value of cumulative fumbles for both the possession and opposing team. �erefore, instead of

one treatment, this experiment has multiple. For example, for those teams that fumble three

times, we have three possible treatments corresponding to whether one, two, or three of these

fumbles were lost. Finally, we interact our instrumental variables with whether a pass was called

on this play. We use the resulting set of instruments in our two-stage least squares estimator and

the number of cumulative fumbles as controls.

Before presenting the estimating equationswe use to estimate usage curves, we build intuition

combinations are themselves invariant for long periods of time, so estimating coach-quarterback combinations might
be a bit fruitless. Moreover, while contracts might last �ve years in the NFL, talent surrounding the quarterback
�uctuates at a faster rate than the quarterback does. Using quarterback-year �xed e�ects controls for injuries to starting
quarterbacks, which tend to adjust the propensity to pass and using the year scale tends to proxy for the turnover of
the rest of team by coinciding with free agency. In addition, this coincides with installations of new playbooks, a key
point where o�ensive philosophy might change. Of course, we could cut these a �ner, estimating QB-coach-year �xed
e�ects that di�er from QB-year �xed e�ects only when there is a mid-season �ring, injury, or quarterback change.
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by estimating the causal e�ect of calling a passing play on e�ciency.

Passigt = α1 (5)

+
K∑
k=1

η1kPost-k Team Fumblesigt +
L∑
l=1

θ1lPost-l Opp. Fumblesigt

+

N∑
n=1

λ1nPost-n Team Fumbles Lostigt +

M∑
m=1

π1mPost-m Opp. Fumbles Lostigt

+ ε1igt

where Pass1igt is an indicator (equal to one) if team i passed on play t of game g. �e ��ed values

of this variable appears in the second stage, denoted with a hat:

y2igp = α2 + β2P̂assigt (6)

+
K∑
k=1

η2kPost-k Team Fumblesigt +
L∑
l=1

θ2lPost-l Opp. Fumblesigp + ε2igt

where y2igp is an e�ciency variable of choice. �is might be EPA, win probability added (WPA),

play success (de�ned as passing some yards or expected points threshold), but we default to EPA.

Based on the assumptions presented in Section 4.1.2, β2 is identi�ed as the LATE of passing on

e�ciency.

Our main results feature a more complex estimation. Since we have two endogenous variables

as well as their interaction, we instrument using both fumbles lost, and fumbles lost speci�cally
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on passing plays as instruments. We specify the �rst stage regressions:

y1igt = α1 (7)

+
K∑
k=1

η1kPost-k Team Fumblesigt +
L∑
l=1

θ1lPost-l Opp. Fumblesigt

+

N∑
n=1

(λ1nPost-n Team Fumbles Lostigt + µ1nPost-n Team Fumbles Lost× Passigt)

+
M∑

m=1

(
π1mPost-m Opp. Fumbles Lostigt + φ1mPost-m Opp. Fumbles Lostigt × Passigt

)
+ ε1igp

where y1igp stands in for the two endogenous variables and their interaction. Again, the ��ed

values of these endogenous variables appear in the second stage, denoted with a hat:

y2igt = α2 + β2P̂assigt + γ2X̂Passigt + δ2 ̂Passigt × XPassigt+ (8)

+
K∑
k=1

η2kPost-k Team Fumblesigt +
L∑
l=1

θ2lPost-l Opp. Fumblesigt + ε2igt

where y2igp is an e�ciency variable of choice. We identify β2, γ2, and δ2 as their respective LATEs.

Moreover, this gives us credible estimates to �ll our our model of optimal play calling. �is will

serve as our preferred speci�cation for estimating parameters of the usage curves model.

4.2.2 Fixed E�ects Speci�cation

Additionally, we can use �xed e�ects estimation to control for unobservable di�erences in teams.

�is might control for quarterback skill or o�ensive play calling philosophy. For the uninstru-
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mented speci�cation, we estimate:

y2igp = α2i + β2Passigp + γ2XPassigp + δ2Passigp × XPassigp + ε2igp (9)

Of course, making a similar adjustment to speci�cation XX and XX allows us to estimate the 2SLS

speci�cation with Fixed E�ects. We will do so as a robustness check.

5 Results

5.1 �e Causal E�ect of Passing on Early Downs

Estimating the naive regressions (Table 1 columns 1 and 2) �rst, we �nd a positive relationship

between QB Dropbacks (i.e., called passes) and o�ensive e�ciency on early down plays. �alita-

tively, this the e�ect we expect – passing has consistently outperformed rushing in this e�ciency

metric. However, when we estimate the Two Way Least Squares Estimator using our Cumulative

Fumbles Lost Instruments we �nd a much larger e�ect. In particular, while the “naive” e�ect was

an increase of 0.16 EPA per called pass, 2SLS estimates a 0.26 EPA increase in EPA (Table 1 column

3.2). How can we understand this di�erence in e�ect sizes? If teams with be�er passing o�enses

also have be�er rushing o�enses (say, because they have good o�ensive lines), this could lead to

the kind of negative omi�ed variable bias seen here.

Second, this illustration shows the behavioral relevance of the instruments for passing. Cu-

mulative fumbles lost seem to drive pass rate as we would expect them to. In particular, fumbles

lost, which put a coach into a worse game state, increases their probability of dropping back to

pass while opponent fumbles lost (i.e., fumbles gained) decreases their probability of dropping

back. When coaches get lucky with fumbles, they are induced to pass less. Moreover, the in-

struments tell a coherent story. �e e�ect size of fumbles lost and gained is relatively symmetric

(opponent fumbles have tiny bit of a stronger e�ect) and the e�ects increase as fumbles mount up

14



Table 1: �e E�ects of Called QB Dropbacks on E�ciency. First and second down plays outside
of the two minute warning from 2006-2020. Controls omi�ed from table.

OLS FE 2SLS FE 2SLS
1st Stage 2nd Stage 1st Stage 2nd Stage

EPA EPA Pass EPA Pass EPA
(1) (2) (3.1) (3.2) (4.1) (4.2)

1 Pos. Fum. Lost 0.021∗∗∗ 0.023∗∗∗
(0.005) (0.004)

2 Pos. Fum. Lost 0.045∗∗∗ 0.047∗∗∗
(0.009) (0.009)

3 Pos. Fum. Lost 0.098∗∗∗ 0.098∗∗∗
(0.019) (0.018)

1 Opp. Fum. Lost −0.024∗∗∗ −0.023∗∗∗
(0.004) (0.004)

2 Opp. Fum. Lost −0.054∗∗∗ −0.059∗∗∗
(0.009) (0.009)

3 Opp. Fum. Lost −0.129∗∗∗ −0.139∗∗∗
(0.020) (0.020)

Pass 0.161∗∗∗ 0.161∗∗∗ 0.258∗ 0.307∗∗
(0.004) (0.004) (0.144) (0.134)

FE No Yes No No Yes Yes
Observations 328367 328367 328369 328367 328369 328367
R2 0.005 0.009 0.004 0.003 0.016 0.005
Adjusted R2 0.005 0.008 0.004 0.003 0.015 0.004

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2: Estimates of Usage Curves in Professional Football. First and second down plays outside
of the two minute warning from 2006-2020. Controls omi�ed from table.

EPA
OLS FE 2SLS FE 2SLS
(1) (2) (3) (4)

Pass 0.243∗∗∗ 0.238∗∗∗ 0.484∗∗∗ 0.484∗∗∗
(0.014) (0.014) (0.117) (0.117)

XPass −0.014 0.030∗∗ 0.458∗∗ 0.540∗∗∗
(0.014) (0.015) (0.203) (0.200)

Pass × XPass −0.136∗∗∗ −0.137∗∗∗ −0.663∗∗∗ −0.680∗∗∗
(0.025) (0.025) (0.198) (0.199)

Constant −0.079∗∗∗ −0.294∗∗∗
(0.007) (0.087)

Fixed E�ects No Yes No Yes
Observations 328367 328367 328367 328367
R2 0.005 0.009 0.003 0.007
Adjusted R2 0.005 0.008 0.003 0.005

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(two fumbles lost makes us pass more than one, and three more than two). Formally testing the

instruments, we estimate a �rst stage Craig Donald statistic of 134.4 from the non-�xed e�ects

2SLS regression, comparable to a critical value of 19.28 (for one endogenous variable, six instru-

ments, and 2SLS bias of 0.05) (Stock and Yogo, 2005), reducing concerns about issues related to

weak instruments.
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5.2 Estimating Usage Curves on Early Downs

5.2.1 Naive Estimates

While the value of passing fell as the expectation of passing increases, rushing did not become

more valuable as it becomes more surprising. Placing these estimates into our simple model of

optimal pass rates, the naive estimates suggest an optimal pass rate of approximately 84% on early

downs.

5.2.2 Two Stage Least Squares Estimates

�e main e�ects on early downs (all �rst and second down plays) are presented in table 2. Fo-

cusing on the pooled 2SLS regression, estimates di�er considerably from the results including

later downs. In particular, usage curves �a�en substantially. When the probability of passing

approaches zero, 2SLS estimates a premium of 0.48 EPA. However, when passing probability is

close to the average pass rate (52%), the passing premium is estimated at around 0.14 EPA (close

to the unconditional premium of 0.16). Finally, in situations where the probability of passing

approaches one, the premium estimated falls to -0.18 EPA. �ese results suggest that o�enses

should pass about 71% of early down plays as opposed to the actual pass rate of 52% on early

downs. �ese results suggest that the average coach overestimate the element of surprise (at

least on early downs) and tends to run to too much as a result.

5.3 Addressing �reats to Validity

5.3.1 Relevance with Multiple Endogenous Variables

While we demonstrated relevance in single equation models, we also provide evidence here

around the relevance of the instruments when we estimate regressions with multiple endogenous

variables. In particular, when estimating the Two-Stage Least Squares with pass rate, expected
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Figure 2: Optimal pass rates with linear usage e�ects OLS and IV estimates

pass rate, and their interaction, we obtain a Craig-Donald Statistic of 134.4 in the early down

sample (our preferred sample). �is is comparable to a critical value of 17.8 from Stock and Yogo

(2005) (for three endogenous regressors and twelve instruments). Results from the �rst stage of

the Pooled 2SLS estimation are presented in Table 3.

5.3.2 When Does 2SLS Estimate LATE?

Recent work has found that 2SLS does not always return estimates of LATE when controls are

included, which might complicate interpretation of results. However, the “saturated” design we

use is consistent with the non-parametric design recommended in Blandhol et al. (2022), which

they show is necessary and su�cient for 2SLS to return LATE.
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Table 3: First Stage Results from 2SLS Usage Curves Estimation. First and second down plays
outside of the two minute warning from 2006-2020. Controls omi�ed from table.

Dependent variable:

Pass XPass XPass x Pass
(1) (2) (3)

1 Pos. Fum. Lost −0.392∗∗∗ −0.055∗∗∗ −0.246∗∗∗
(0.004) (0.003) (0.003)

2 Pos. Fum. Lost −0.391∗∗∗ −0.053∗∗∗ −0.264∗∗∗
(0.009) (0.006) (0.006)

3 Pos. Fum. Lost −0.360∗∗∗ −0.019 −0.258∗∗∗
(0.020) (0.017) (0.012)

1 Opp. Fum. Lost −0.406∗∗∗ −0.087∗∗∗ −0.246∗∗∗
(0.004) (0.003) (0.003)

2 Opp. Fum. Lost −0.392∗∗∗ −0.118∗∗∗ −0.244∗∗∗
(0.008) (0.006) (0.005)

3 Opp. Fum. Lost −0.376∗∗∗ −0.162∗∗∗ −0.237∗∗∗
(0.016) (0.012) (0.010)

1 Pos. Fum. Lost x Pass 0.755∗∗∗ 0.132∗∗∗ 0.490∗∗∗
(0.006) (0.002) (0.004)

2 Pos. Fum. Lost x Pass 0.742∗∗∗ 0.157∗∗∗ 0.529∗∗∗
(0.013) (0.005) (0.009)

3 Pos. Fum. Lost x Pass 0.686∗∗∗ 0.148∗∗∗ 0.538∗∗∗
(0.033) (0.015) (0.023)

1 Opp. Fum. Lost x Pass 0.766∗∗∗ 0.128∗∗∗ 0.444∗∗∗
(0.006) (0.002) (0.004)

2 Opp. Fum. Lost x Pass 0.747∗∗∗ 0.157∗∗∗ 0.427∗∗∗
(0.013) (0.005) (0.009)

3 Opp. Fum. Lost x Pass 0.711∗∗∗ 0.173∗∗∗ 0.374∗∗∗
(0.032) (0.017) (0.027)

Observations 328369 328369 328369
R2 0.391 0.128 0.381
Adjusted R2 0.391 0.128 0.381

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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6 Conclusion

6.1 Future Work

6.1.1 Further Exploration of Context and Heterogeneity

We hope to continue this research by further exploring the context that might drive play calling.

First, do game scenarios beyond those that we described augment optimal choice? Second, we

hope to explore heterogeneity in incentives. In this work, we have not addressed the fact that

some teams may be�er or worse passing and rushing games. For example, a team with an elite

passer like prime Patrick Mahomes will have a be�er passing o�ense than others, which would

mean that team should have a be�er passing o�ense. Alternatively, a team with an elite rushing

quarterback like Lamar Jackson may tilt more towards the run game based on the e�ciency of

quarterback runs (as compared to running backs).

6.1.2 What Explains Departures from Optimal Passing Rates?

It is o�en hard to �nd clear mistakes in decision-making. Because football features �xed, known

rules and computable incentives, in a highly competitive environment with high stakes, studying

deviations from optimal play-calling can be an enlightening look into decision-making under un-

certainty. Deviations from optimal decision-making have been explored before, o�en in limited

situations. For example, Romer (2006) documents systematic departures from fourth down deci-

sions that would maximize teams changes of winning. Football also provides a se�ing to move

beyond “do �rms maximize?” to study “what do �rms maximize?” Slade and Tolhurst (2019) stud-

ies how the coaches incentives might drive decision-making under uncertainty in these se�ings,

�nding that coaches are more risk loving when their job is very secure or when they are close to

being �red.
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While past work has worked to do this in the context of pass-rush ratios,11 none have had

such convincing causal identi�cation in determining optimal decision-making. �erefore, there

may be considerable value added to reexamine these explanations within this context. In future

work, we hope to study decision-making leveraging the clarity with which we can identify both

optimal playcalling and therefore deviations from optimal playcalling.

11See Alamar (2006), Rockerbie (2008), Jordan et al. (2009), and McGarrity and Linnen (2010)
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A Robustness

A.1 Relevance with Multiple Endogenous Variables: Fixed E�ects Results

Table 4 presents evidence of instrumental relevance from the �xed e�ects speci�cations.
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Table 4: First Stage Results from FE 2SLS Usage Curves Estimation. First and second down plays
outside of the two minute warning from 2006-2020. Controls omi�ed from table.

Dependent variable:

Pass XPass XPass x Pass
(1) (2) (3)

1 Pos. Fum. Lost −0.390∗∗∗ −0.052∗∗∗ −0.243∗∗∗
(0.004) (0.003) (0.003)

2 Pos. Fum. Lost −0.388∗∗∗ −0.050∗∗∗ −0.261∗∗∗
(0.009) (0.006) (0.006)

3 Pos. Fum. Lost −0.358∗∗∗ −0.016 −0.256∗∗∗
(0.020) (0.016) (0.012)

1 Opp. Fum. Lost −0.404∗∗∗ −0.086∗∗∗ −0.244∗∗∗
(0.004) (0.003) (0.003)

2 Opp. Fum. Lost −0.393∗∗∗ −0.119∗∗∗ −0.245∗∗∗
(0.008) (0.006) (0.005)

3 Opp. Fum. Lost −0.379∗∗∗ −0.156∗∗∗ −0.236∗∗∗
(0.016) (0.012) (0.010)

1 Pos. Fum. Lost x Pass 0.751∗∗∗ 0.130∗∗∗ 0.487∗∗∗
(0.006) (0.002) (0.004)

2 Pos. Fum. Lost x Pass 0.738∗∗∗ 0.154∗∗∗ 0.525∗∗∗
(0.013) (0.005) (0.009)

3 Pos. Fum. Lost x Pass 0.686∗∗∗ 0.146∗∗∗ 0.537∗∗∗
(0.032) (0.014) (0.023)

1 Opp. Fum. Lost x Pass 0.763∗∗∗ 0.126∗∗∗ 0.442∗∗∗
(0.006) (0.002) (0.004)

2 Opp. Fum. Lost x Pass 0.744∗∗∗ 0.155∗∗∗ 0.425∗∗∗
(0.013) (0.005) (0.009)

3 Opp. Fum. Lost x Pass 0.710∗∗∗ 0.168∗∗∗ 0.370∗∗∗
(0.032) (0.016) (0.026)

Observations 328,369 328,369 328,369
R2 0.396 0.147 0.387
Adjusted R2 0.395 0.146 0.386

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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A.2 Instrumental Validity: Passing Aggression

Othermargins of aggression in decision-making by coachesmay threaten the exclusion restriction

if they are correlated with e�ciency. A concerning alternative mechanism might be depth of

passes thrown when in a negative game state. Table 5 presents results of regressing passing

strategy and e�ciency on our instruments. However, we �nd that on early down pass a�empts,

cumulative fumbles lost do not increase the share of deep passes, nor the EPA per dropback on

called passes.
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Table 5: E�ect of Cumulative Fumbles Lost on Passing Scheme Aggression. First and second down
plays outside of the two minute warning from 2006-2020. Controls omi�ed from table.

Dependent variable:

Deep Pass Dropback EPA
(1) (2) (3) (4)

1 Pos. Fum. Lost −0.002 −0.002 −0.001 0.002
(0.003) (0.003) (0.012) (0.011)

2 Pos. Fum. Lost 0.0003 −0.002 0.002 0.006
(0.006) (0.006) (0.022) (0.022)

3 Pos. Fum. Lost 0.00004 −0.006 0.052 0.079∗
(0.013) (0.013) (0.046) (0.046)

1 Opp. Fum. Lost −0.004 −0.005 0.007 0.011
(0.003) (0.003) (0.011) (0.011)

2 Opp. Fum. Lost −0.003 −0.003 0.003 0.013
(0.007) (0.007) (0.023) (0.023)

3 Opp. Fum. Lost −0.008 −0.003 0.023 0.022
(0.016) (0.016) (0.056) (0.056)

Constant 0.179∗∗∗ 0.085∗∗∗
(0.002) (0.006)

Fixed E�ects No Yes No Yes
Observations 154572 154572 169466 169466
R2 0.0002 0.008 0.0002 0.007
Adjusted R2 0.0001 0.005 0.0001 0.004

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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